Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import streamlit as st
|
|
| 2 |
import pdfplumber
|
| 3 |
import pytesseract
|
| 4 |
import openai
|
|
|
|
| 5 |
import json
|
| 6 |
import pandas as pd
|
| 7 |
import numpy as np
|
|
@@ -11,227 +12,239 @@ import time
|
|
| 11 |
import traceback
|
| 12 |
import os
|
| 13 |
import hashlib
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
| 51 |
try:
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
except Exception as e:
|
| 55 |
-
|
| 56 |
-
return
|
| 57 |
|
| 58 |
-
def
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
processed_img = handle_image_errors(img['stream'])
|
| 75 |
-
if processed_img:
|
| 76 |
-
page_data["images"].append(processed_img)
|
| 77 |
-
|
| 78 |
-
doc_data.append(page_data)
|
| 79 |
-
time.sleep(0.01) # Yield for UI updates
|
| 80 |
-
|
| 81 |
-
st.session_state.document_data = doc_data
|
| 82 |
-
return True
|
| 83 |
-
except Exception as e:
|
| 84 |
-
st.error(f"PDF processing failed: {str(e)}")
|
| 85 |
-
return False
|
| 86 |
-
|
| 87 |
-
def generate_qa_content():
|
| 88 |
-
"""Model-agnostic content generation"""
|
| 89 |
-
st.session_state.processing_stage = 'generating'
|
| 90 |
-
qa_pairs = []
|
| 91 |
-
|
| 92 |
-
try:
|
| 93 |
-
client = openai.OpenAI(
|
| 94 |
-
base_url=SUPPORTED_MODELS[st.session_state.model_settings['current_model']]['base_url'],
|
| 95 |
-
api_key=st.session_state.api_keys.get(
|
| 96 |
-
SUPPORTED_MODELS[st.session_state.model_settings['current_model']]['required_key']
|
| 97 |
-
)
|
| 98 |
-
)
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
messages=[{
|
| 108 |
-
"role": "user",
|
| 109 |
-
"content": f"Generate 3 Q&A pairs from this financial content:\n{text_content}\nOutput JSON format with keys: question, answer_1, answer_2"
|
| 110 |
-
}],
|
| 111 |
-
response_format={"type": "json_object"},
|
| 112 |
-
temperature=st.session_state.model_settings['temperature']
|
| 113 |
-
)
|
| 114 |
|
| 115 |
try:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
).encode()
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
| 148 |
if 'Parquet' in formats:
|
| 149 |
-
df = pd.DataFrame(st.session_state.qa_pairs)
|
| 150 |
buffer = BytesIO()
|
| 151 |
df.to_parquet(buffer)
|
| 152 |
-
|
| 153 |
|
| 154 |
-
return
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
type="password",
|
| 166 |
-
key=f"
|
| 167 |
)
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
def
|
| 172 |
-
"""
|
| 173 |
-
|
| 174 |
-
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
"Upload PDF Report",
|
| 179 |
-
type=["pdf"],
|
| 180 |
-
accept_multiple_files=False
|
| 181 |
-
)
|
| 182 |
|
| 183 |
-
|
| 184 |
-
if uploaded_file and st.button("Start Analysis"):
|
| 185 |
-
if process_pdf(uploaded_file) and generate_qa_content():
|
| 186 |
-
st.session_state.processing_stage = 'complete'
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
st.
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
"
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
)
|
| 210 |
-
|
| 211 |
-
# Results Preview
|
| 212 |
-
with st.expander("π View Generated Content"):
|
| 213 |
-
st.dataframe(
|
| 214 |
-
pd.DataFrame(st.session_state.qa_pairs),
|
| 215 |
-
use_container_width=True,
|
| 216 |
-
height=400
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
def model_settings():
|
| 220 |
-
"""Model configuration panel"""
|
| 221 |
-
with st.sidebar.expander("π§ AI Settings", expanded=True):
|
| 222 |
-
st.selectbox(
|
| 223 |
-
"AI Model",
|
| 224 |
-
list(SUPPORTED_MODELS.keys()),
|
| 225 |
-
key='model_settings.current_model'
|
| 226 |
-
)
|
| 227 |
-
st.slider(
|
| 228 |
-
"Creativity Level",
|
| 229 |
-
0.0, 1.0, 0.3,
|
| 230 |
-
key='model_settings.temperature'
|
| 231 |
-
)
|
| 232 |
|
| 233 |
if __name__ == "__main__":
|
| 234 |
-
|
| 235 |
-
api_key_manager()
|
| 236 |
-
model_settings()
|
| 237 |
-
main_interface()
|
|
|
|
| 2 |
import pdfplumber
|
| 3 |
import pytesseract
|
| 4 |
import openai
|
| 5 |
+
from openai import OpenAI
|
| 6 |
import json
|
| 7 |
import pandas as pd
|
| 8 |
import numpy as np
|
|
|
|
| 12 |
import traceback
|
| 13 |
import os
|
| 14 |
import hashlib
|
| 15 |
+
import groq
|
| 16 |
|
| 17 |
+
class SyntheticDataGenerator:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
self.SUPPORTED_MODELS = {
|
| 20 |
+
"Deepseek": {
|
| 21 |
+
"client": lambda key: OpenAI(base_url="https://api.deepseek.com/v1", api_key=key),
|
| 22 |
+
"models": ["deepseek-chat"],
|
| 23 |
+
"key_name": "DEEPSEEK_KEY"
|
| 24 |
+
},
|
| 25 |
+
"OpenAI": {
|
| 26 |
+
"client": lambda key: OpenAI(api_key=key),
|
| 27 |
+
"models": ["gpt-4-turbo"],
|
| 28 |
+
"key_name": "OPENAI_KEY"
|
| 29 |
+
},
|
| 30 |
+
"Mistral-Groq": {
|
| 31 |
+
"client": lambda key: groq.Groq(api_key=key),
|
| 32 |
+
"models": ["mixtral-8x7b-32768", "llama2-70b-4096"],
|
| 33 |
+
"key_name": "GROQ_KEY"
|
| 34 |
+
}
|
| 35 |
+
}
|
| 36 |
+
self.init_session()
|
| 37 |
+
|
| 38 |
+
def init_session(self):
|
| 39 |
+
if 'qa_pairs' not in st.session_state:
|
| 40 |
+
st.session_state.qa_pairs = []
|
| 41 |
+
if 'doc_data' not in st.session_state:
|
| 42 |
+
st.session_state.doc_data = []
|
| 43 |
+
if 'processing' not in st.session_state:
|
| 44 |
+
st.session_state.processing = {
|
| 45 |
+
'stage': 'idle',
|
| 46 |
+
'errors': [],
|
| 47 |
+
'warnings': []
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
def process_pdf(self, uploaded_file):
|
| 51 |
+
"""Robust PDF processing with advanced image handling"""
|
| 52 |
+
st.session_state.processing = {'stage': 'extracting', 'errors': [], 'warnings': []}
|
| 53 |
+
|
| 54 |
try:
|
| 55 |
+
with pdfplumber.load(uploaded_file) as pdf:
|
| 56 |
+
for page_num, page in enumerate(pdf.pages, 1):
|
| 57 |
+
page_data = self._process_page(page, page_num)
|
| 58 |
+
st.session_state.doc_data.append(page_data)
|
| 59 |
+
|
| 60 |
+
if len(st.session_state.processing['errors']) > 0:
|
| 61 |
+
st.error(f"Processed with {len(st.session_state.processing['errors'])} errors")
|
| 62 |
+
return True
|
| 63 |
except Exception as e:
|
| 64 |
+
self._log_error(f"PDF loading failed: {str(e)}")
|
| 65 |
+
return False
|
| 66 |
|
| 67 |
+
def _process_page(self, page, page_num):
|
| 68 |
+
"""Process individual page with nested error handling"""
|
| 69 |
+
page_data = {"page": page_num, "text": "", "images": []}
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
page_data["text"] = page.extract_text() or ""
|
| 73 |
+
except Exception as e:
|
| 74 |
+
self._log_error(f"Page {page_num} text extraction failed: {str(e)}")
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
for img_idx, img in enumerate(page.images):
|
| 78 |
+
img_data = self._process_image(img, page_num, img_idx)
|
| 79 |
+
if img_data:
|
| 80 |
+
page_data["images"].append(img_data)
|
| 81 |
+
except Exception as e:
|
| 82 |
+
self._log_error(f"Page {page_num} image processing failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
return page_data
|
| 85 |
+
|
| 86 |
+
def _process_image(self, img, page_num, img_idx):
|
| 87 |
+
"""Advanced image processing with multiple fallbacks"""
|
| 88 |
+
try:
|
| 89 |
+
stream = img['stream']
|
| 90 |
+
width = self._get_dimension(stream, 'width')
|
| 91 |
+
height = self._get_dimension(stream, 'height')
|
| 92 |
|
| 93 |
+
if width <= 0 or height <= 0:
|
| 94 |
+
raise ValueError("Invalid image dimensions")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
try:
|
| 97 |
+
return Image.frombytes("RGB", (width, height), stream.get_data())
|
| 98 |
+
except:
|
| 99 |
+
return Image.frombytes("L", (width, height), stream.get_data()).convert("RGB")
|
| 100 |
+
except Exception as e:
|
| 101 |
+
self._log_error(f"Page {page_num} image {img_idx} failed: {str(e)}")
|
| 102 |
+
return None
|
| 103 |
+
|
| 104 |
+
def _get_dimension(self, stream, dimension):
|
| 105 |
+
"""Safe dimension extraction with multiple fallbacks"""
|
| 106 |
+
try:
|
| 107 |
+
return int(stream[dimension])
|
| 108 |
+
except:
|
| 109 |
+
try:
|
| 110 |
+
return int(stream['stream'][dimension])
|
| 111 |
+
except:
|
| 112 |
+
try:
|
| 113 |
+
return int(stream['data'][dimension])
|
| 114 |
+
except:
|
| 115 |
+
return 0
|
| 116 |
+
|
| 117 |
+
def generate_qa(self, model_provider, model_name, temperature):
|
| 118 |
+
"""Multi-model generation engine"""
|
| 119 |
+
st.session_state.processing = {'stage': 'generating', 'errors': []}
|
| 120 |
+
qa_pairs = []
|
|
|
|
| 121 |
|
| 122 |
+
try:
|
| 123 |
+
client = self.SUPPORTED_MODELS[model_provider]["client"](
|
| 124 |
+
st.session_state[model_provider.lower() + "_key"]
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
for page in st.session_state.doc_data:
|
| 128 |
+
content = self._get_page_content(page)
|
| 129 |
+
response = self._generate(client, model_name, content, temperature)
|
| 130 |
+
qa_pairs.extend(self._parse_response(response))
|
| 131 |
+
|
| 132 |
+
st.session_state.qa_pairs = qa_pairs
|
| 133 |
+
return True
|
| 134 |
+
except Exception as e:
|
| 135 |
+
self._log_error(f"Generation failed: {str(e)}")
|
| 136 |
+
return False
|
| 137 |
+
|
| 138 |
+
def _generate(self, client, model, content, temp):
|
| 139 |
+
"""Unified generation interface"""
|
| 140 |
+
if isinstance(client, groq.Groq):
|
| 141 |
+
return client.chat.completions.create(
|
| 142 |
+
messages=[{"role": "user", "content": content}],
|
| 143 |
+
model=model,
|
| 144 |
+
temperature=temp,
|
| 145 |
+
response_format={"type": "json_object"}
|
| 146 |
+
)
|
| 147 |
+
else:
|
| 148 |
+
return client.chat.completions.create(
|
| 149 |
+
model=model,
|
| 150 |
+
messages=[{"role": "user", "content": content}],
|
| 151 |
+
temperature=temp,
|
| 152 |
+
response_format={"type": "json_object"}
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
def _parse_response(self, response):
|
| 156 |
+
"""Safe response parsing"""
|
| 157 |
+
try:
|
| 158 |
+
content = json.loads(response.choices[0].message.content)
|
| 159 |
+
return content.get('qa_pairs', [])
|
| 160 |
+
except Exception as e:
|
| 161 |
+
self._log_error(f"Response parsing failed: {str(e)}")
|
| 162 |
+
return []
|
| 163 |
+
|
| 164 |
+
def export_data(self, formats):
|
| 165 |
+
"""Multi-format export system"""
|
| 166 |
+
exports = {}
|
| 167 |
+
df = pd.DataFrame(st.session_state.qa_pairs)
|
| 168 |
|
| 169 |
+
if 'JSON' in formats:
|
| 170 |
+
exports['synthetic_data.json'] = df.to_json(orient='records').encode()
|
| 171 |
+
if 'CSV' in formats:
|
| 172 |
+
exports['synthetic_data.csv'] = df.to_csv(index=False).encode()
|
| 173 |
if 'Parquet' in formats:
|
|
|
|
| 174 |
buffer = BytesIO()
|
| 175 |
df.to_parquet(buffer)
|
| 176 |
+
exports['synthetic_data.parquet'] = buffer.getvalue()
|
| 177 |
|
| 178 |
+
return exports
|
| 179 |
+
|
| 180 |
+
def _log_error(self, message):
|
| 181 |
+
"""Centralized error logging"""
|
| 182 |
+
st.session_state.processing['errors'].append(message)
|
| 183 |
+
st.error(message)
|
| 184 |
+
|
| 185 |
+
def _get_page_content(self, page):
|
| 186 |
+
"""Multimodal content extraction"""
|
| 187 |
+
text = page["text"]
|
| 188 |
+
if not text:
|
| 189 |
+
text = " ".join([pytesseract.image_to_string(img) for img in page["images"]])
|
| 190 |
+
return text
|
| 191 |
+
|
| 192 |
+
def ui_setup():
|
| 193 |
+
"""Enterprise-grade UI configuration"""
|
| 194 |
+
st.set_page_config(
|
| 195 |
+
page_title="Synthetic Data Factory Pro",
|
| 196 |
+
page_icon="π",
|
| 197 |
+
layout="wide",
|
| 198 |
+
initial_sidebar_state="expanded"
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
with st.sidebar:
|
| 202 |
+
st.header("π API Key Management")
|
| 203 |
+
for provider in ["Deepseek", "OpenAI", "Mistral-Groq"]:
|
| 204 |
+
st.text_input(
|
| 205 |
+
f"{provider} API Key",
|
| 206 |
type="password",
|
| 207 |
+
key=f"{provider.lower()}_key"
|
| 208 |
)
|
| 209 |
+
|
| 210 |
+
st.header("π§ AI Configuration")
|
| 211 |
+
provider = st.selectbox("Model Provider", ["Deepseek", "OpenAI", "Mistral-Groq"])
|
| 212 |
+
model = st.selectbox("Model", generator.SUPPORTED_MODELS[provider]["models"])
|
| 213 |
+
temp = st.slider("Temperature", 0.0, 1.0, 0.3)
|
| 214 |
+
|
| 215 |
+
return provider, model, temp
|
| 216 |
|
| 217 |
+
def main():
|
| 218 |
+
"""Main application flow"""
|
| 219 |
+
provider, model, temp = ui_setup()
|
| 220 |
+
generator = SyntheticDataGenerator()
|
| 221 |
|
| 222 |
+
st.title("π Synthetic Data Factory Pro")
|
| 223 |
+
st.write("Enterprise-grade document processing with multi-modal AI")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
+
uploaded_file = st.file_uploader("Upload PDF Document", type=["pdf"])
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
+
if uploaded_file and st.button("Start Generation"):
|
| 228 |
+
if generator.process_pdf(uploaded_file):
|
| 229 |
+
if generator.generate_qa(provider, model, temp):
|
| 230 |
+
st.success("Generation completed successfully!")
|
| 231 |
+
|
| 232 |
+
with st.expander("π Results Preview"):
|
| 233 |
+
st.dataframe(pd.DataFrame(st.session_state.qa_pairs))
|
| 234 |
+
|
| 235 |
+
with st.expander("π¦ Advanced Export"):
|
| 236 |
+
formats = st.multiselect(
|
| 237 |
+
"Select formats",
|
| 238 |
+
["JSON", "CSV", "Parquet"],
|
| 239 |
+
default=["JSON", "CSV"]
|
| 240 |
+
)
|
| 241 |
+
exports = generator.export_data(formats)
|
| 242 |
+
|
| 243 |
+
if st.download_button("Export Package",
|
| 244 |
+
data=json.dumps(exports),
|
| 245 |
+
file_name="synthetic_data.zip",
|
| 246 |
+
mime="application/zip"):
|
| 247 |
+
st.success("Export package generated!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
if __name__ == "__main__":
|
| 250 |
+
main()
|
|
|
|
|
|
|
|
|