Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,90 @@
|
|
1 |
import os
|
2 |
-
import
|
|
|
3 |
from datasets import load_dataset
|
4 |
-
from
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# Load dataset
|
11 |
-
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
# Metric simulation logic (placeholder)
|
17 |
def evaluate_model(model_name):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
inst_acc = round(random.uniform(30, 80), 2)
|
24 |
-
tool_acc = round(random.uniform(10, 70), 2)
|
25 |
-
summ_acc = round(random.uniform(40, 90), 2)
|
26 |
-
|
27 |
-
output_rows = []
|
28 |
-
for q in sample_queries:
|
29 |
-
user_input = next(d['content'] for d in q['dialogs'] if d['role'] == "user")
|
30 |
-
toolnames = [t["name"] for t in q["tools"]]
|
31 |
-
output_rows.append({
|
32 |
-
"Query": user_input[:80] + "...",
|
33 |
-
"Tools": ", ".join(toolnames),
|
34 |
-
"Prediction": pipe(user_input, max_new_tokens=64)[0]["generated_text"]
|
35 |
-
})
|
36 |
-
|
37 |
-
return f"""
|
38 |
-
✅ Evaluation Metrics:
|
39 |
-
- Instruction Accuracy: {inst_acc}%
|
40 |
-
- Tool Selection Accuracy: {tool_acc}%
|
41 |
-
- Summary Accuracy: {summ_acc}%
|
42 |
-
""", output_rows
|
43 |
-
|
44 |
-
except Exception as e:
|
45 |
-
return f"❌ Error loading model or generating output: {e}", []
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import requests
|
3 |
+
from huggingface_hub import login, hf_hub_url
|
4 |
from datasets import load_dataset
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
# Authenticate using HF token
|
11 |
+
login(token=os.environ["HF_TOKEN"])
|
12 |
+
|
13 |
+
# Helper to resolve image path
|
14 |
+
def resolve_image_url(path):
|
15 |
+
return hf_hub_url(repo_id="Jize1/GTA", filename=path, repo_type="dataset")
|
16 |
|
17 |
+
# Download image from HF hub with token
|
18 |
+
def download_image(url):
|
19 |
+
headers = {"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}
|
20 |
+
response = requests.get(url, headers=headers)
|
21 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
22 |
+
return image
|
23 |
|
24 |
+
# Load GTA dataset
|
25 |
+
print("Loading GTA dataset...")
|
26 |
+
gta_data = load_dataset("Jize1/GTA", split="train", use_auth_token=True)
|
27 |
|
28 |
+
# Load image captioning and OCR pipelines
|
29 |
+
print("Loading vision models...")
|
30 |
+
image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
31 |
+
ocr_pipeline = pipeline("image-classification", model="microsoft/dit-base-finetuned-iiit5k") # placeholder OCR
|
32 |
|
|
|
33 |
def evaluate_model(model_name):
|
34 |
+
total = 0
|
35 |
+
inst_acc = 0
|
36 |
+
tool_acc = 0
|
37 |
+
summ_acc = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
for example in gta_data.select(range(10)): # limit to 10 for demo
|
40 |
+
dialogs = example["dialogs"]
|
41 |
+
gt_answer = example["gt_answer"]
|
42 |
+
|
43 |
+
user_query = dialogs[0]["content"]
|
44 |
+
files = example["files"]
|
45 |
+
tool_calls = [d for d in dialogs if d.get("tool_calls")]
|
46 |
+
|
47 |
+
image_path = files[0]["path"]
|
48 |
+
image_url = resolve_image_url(image_path)
|
49 |
+
image = download_image(image_url)
|
50 |
|
51 |
+
# Fake tool execution: use captioner/ocr based on tool type
|
52 |
+
result = ""
|
53 |
+
for tool_call in tool_calls:
|
54 |
+
tool = tool_call["tool_calls"][0]["function"]["name"]
|
55 |
+
if tool == "ImageDescription":
|
56 |
+
caption = image_captioner(image)[0]["generated_text"]
|
57 |
+
result += f"[Caption] {caption}\n"
|
58 |
+
elif tool == "OCR":
|
59 |
+
result += f"[OCR] dummy OCR result for {image_path}\n"
|
60 |
+
elif tool == "CountGivenObject":
|
61 |
+
result += f"[Count] dummy count result\n"
|
62 |
+
|
63 |
+
# Simulate metrics
|
64 |
+
inst_acc += 1
|
65 |
+
tool_acc += 1 if len(tool_calls) > 0 else 0
|
66 |
+
summ_acc += 1 if gt_answer["whitelist"] else 0
|
67 |
+
total += 1
|
68 |
+
|
69 |
+
return {
|
70 |
+
"InstAcc": round(inst_acc / total * 100, 2),
|
71 |
+
"ToolAcc": round(tool_acc / total * 100, 2),
|
72 |
+
"SummAcc": round(summ_acc / total * 100, 2)
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
def run_evaluation(model_name):
|
77 |
+
results = evaluate_model(model_name)
|
78 |
+
return f"Results for {model_name}:\n" + "\n".join(f"{k}: {v}%" for k, v in results.items())
|
79 |
+
|
80 |
+
# Gradio UI
|
81 |
+
demo = gr.Interface(
|
82 |
+
fn=run_evaluation,
|
83 |
+
inputs=gr.Textbox(label="Hugging Face Model Name", placeholder="e.g. Qwen/Qwen2.5-3B"),
|
84 |
+
outputs=gr.Textbox(label="GTA Evaluation Metrics"),
|
85 |
+
title="GTA LLM Evaluation",
|
86 |
+
description="Enter a model name from Hugging Face to simulate tool use and get GTA-style metrics.",
|
87 |
+
allow_flagging="never"
|
88 |
+
)
|
89 |
|
90 |
+
demo.launch()
|