import spaces from snac import SNAC import torch import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from huggingface_hub import snapshot_download from dotenv import load_dotenv load_dotenv() # Check if CUDA is available device = "cuda" if torch.cuda.is_available() else "cpu" print("Loading SNAC model...") snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") snac_model = snac_model.to(device) model_name = "syvai/tts-v0.3-finetuned" # Download only model config and safetensors snapshot_download( repo_id=model_name, allow_patterns=[ "config.json", "*.safetensors", "model.safetensors.index.json", ], ignore_patterns=[ "optimizer.pt", "pytorch_model.bin", "training_args.bin", "scheduler.pt", "tokenizer.json", "tokenizer_config.json", "special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.*" ] ) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_name) print(f"Orpheus model loaded to {device}") # Process text prompt def process_prompt(prompt, voice, tokenizer, device): prompt = f"{voice}: {prompt}" input_ids = tokenizer(prompt, return_tensors="pt").input_ids start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH # No padding needed for single input attention_mask = torch.ones_like(modified_input_ids) return modified_input_ids.to(device), attention_mask.to(device) # Parse output tokens to audio def parse_output(generated_ids): token_to_find = 128257 token_to_remove = 128258 token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True) if len(token_indices[1]) > 0: last_occurrence_idx = token_indices[1][-1].item() cropped_tensor = generated_ids[:, last_occurrence_idx+1:] else: cropped_tensor = generated_ids processed_rows = [] for row in cropped_tensor: masked_row = row[row != token_to_remove] processed_rows.append(masked_row) code_lists = [] for row in processed_rows: row_length = row.size(0) new_length = (row_length // 7) * 7 trimmed_row = row[:new_length] trimmed_row = [t - 128266 for t in trimmed_row] code_lists.append(trimmed_row) return code_lists[0] # Return just the first one for single sample # Redistribute codes for audio generation def redistribute_codes(code_list, snac_model): device = next(snac_model.parameters()).device # Get the device of SNAC model layer_1 = [] layer_2 = [] layer_3 = [] for i in range((len(code_list)+1)//7): layer_1.append(code_list[7*i]) layer_2.append(code_list[7*i+1]-4096) layer_3.append(code_list[7*i+2]-(2*4096)) layer_3.append(code_list[7*i+3]-(3*4096)) layer_2.append(code_list[7*i+4]-(4*4096)) layer_3.append(code_list[7*i+5]-(5*4096)) layer_3.append(code_list[7*i+6]-(6*4096)) # Move tensors to the same device as the SNAC model codes = [ torch.tensor(layer_1, device=device).unsqueeze(0), torch.tensor(layer_2, device=device).unsqueeze(0), torch.tensor(layer_3, device=device).unsqueeze(0) ] audio_hat = snac_model.decode(codes) return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array # Main generation function @spaces.GPU() def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()): if not text.strip(): return None try: progress(0.1, "Processing text...") input_ids, attention_mask = process_prompt(text, voice, tokenizer, device) progress(0.3, "Generating speech tokens...") with torch.no_grad(): generated_ids = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, num_return_sequences=1, eos_token_id=128258, ) progress(0.6, "Processing speech tokens...") code_list = parse_output(generated_ids) progress(0.8, "Converting to audio...") audio_samples = redistribute_codes(code_list, snac_model) return (24000, audio_samples) # Return sample rate and audio except Exception as e: print(f"Error generating speech: {e}") return None # Examples for the UI examples = [ ["Hej, mit navn er Sofie. Jeg er 20 år gammel og studerer på KU. Jeg elsker at læse og spise is. Jeg elsker at grine. . Jeg håber snart det bliver bedre vejr. ", "sofie", 0.2, 0.95, 1.1, 1200], ["Velkommen til Anna! Hov, det er mig der er Anna. Håber du kan lide min stemme.", "anna", 0.2, 0.95, 1.1, 1200], ["Spørger man lykke friis, der er tysklandskender og direktør i Tænketanken europa, så kan man kun gætte på årsagerne, men er ikke gode venner med alle i regeringen.", "mic", 0.2, 0.95, 1.1, 1200], ["Det burde have været en formssag i Den Tyske Forbundsdag, men det endte som alt andet end det. For første gang i Forbundsrepublikkens historie fik kanslerkandidaten ikke nok stemmer til at sikre sig den fornemme titel som kansler, da der skulle stemmes i parlamentet.", "nic", 0.2, 0.95, 1.1, 2000], ] # Available voices VOICES = ["anna", "nic", "mic", "sofie"] # Available Emotive Tags EMOTIVE_TAGS = [] # Create Gradio interface with gr.Blocks(title="Syv.ai TTS v0.3") as demo: gr.Markdown(f""" # 🎵 [Syv.ai TTS v0.3](https://huggingface.co/syvai/tts-v0.3-finetuned) Skriv din tekst (gerne kortere end 200 tegn) nedenfor og hør hvad den kan. Vi har pt. 4 stemmer, og der kommer løbende flere til. Sofie er vores nyeste stemme, og er trænet til at kunne udtrykke sig med grin, "øh" og andre paralinguistiske elementer. Anna er vores første syntetiske stemme, dvs. ikke en rigtigt person, men distilleret fra en anden model. Mic og Nic er rigtige personer, men er ikke trænet til at udtrykke sig med grin, "øh" og andre paralinguistiske elementer. De er gode til at oplæse tekster. Syvai TTS er trænet på +1000 timer af dansk tale og bygger ovenpå en model fra [Orpheus TTS](https://huggingface.co/canopyai/Orpheus-TTS). """) with gr.Row(): with gr.Column(scale=3): text_input = gr.Textbox( label="Tekst at tale", placeholder="Indtast din tekst her...", lines=5 ) voice = gr.Dropdown( choices=VOICES, value="anna", label="Stemme" ) with gr.Accordion("Advanced Settings", open=False): temperature = gr.Slider( minimum=0.0, maximum=1.5, value=0.6, step=0.05, label="Temperature", info="Higher values (0.7-1.0) create more expressive but less stable speech" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top P", info="Nucleus sampling threshold" ) repetition_penalty = gr.Slider( minimum=1.0, maximum=2.0, value=1.1, step=0.05, label="Repetition Penalty", info="Higher values discourage repetitive patterns" ) max_new_tokens = gr.Slider( minimum=100, maximum=2000, value=1200, step=100, label="Max Length", info="Maximum length of generated audio (in tokens)" ) with gr.Row(): submit_btn = gr.Button("Generer tale", variant="primary") clear_btn = gr.Button("Ryd") with gr.Column(scale=2): audio_output = gr.Audio(label="Genereret tale", type="numpy") # Set up examples gr.Examples( examples=examples, inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens], outputs=audio_output, fn=generate_speech, cache_examples=True, ) # Set up event handlers submit_btn.click( fn=generate_speech, inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens], outputs=audio_output ) clear_btn.click( fn=lambda: (None, None), inputs=[], outputs=[text_input, audio_output] ) # Launch the app if __name__ == "__main__": demo.queue().launch(share=False, ssr_mode=False)