File size: 15,862 Bytes
2fc77f5
 
3c343e0
2fc77f5
 
3c343e0
 
 
2fc77f5
 
3c343e0
2fc77f5
3c343e0
2fc77f5
 
 
 
 
 
3c343e0
2fc77f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c343e0
2fc77f5
 
 
 
3c343e0
2fc77f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c343e0
2fc77f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c343e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import json
import os
import shutil
import re
import numpy as np
import pandas as pd
import gradio as gr
from urllib.parse import urlparse
from collections import defaultdict
from datetime import datetime, timedelta, timezone
from typing import Literal

from huggingface_hub import HfApi, HfFileSystem, hf_hub_url, get_hf_file_metadata
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer

from src.display.utils import TEXT_TASKS, VISION_TASKS, NUM_EXPECTED_EXAMPLES
from src.envs import EVAL_REQUESTS_SUBGRAPH, EVAL_REQUESTS_CAUSALGRAPH


def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
    """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
    try:
        config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
        if test_tokenizer:
            try:
                tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
            except ValueError as e:
                return (
                    False,
                    f"uses a tokenizer which is not in a transformers release: {e}",
                    None
                )
            except Exception as e:
                return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
        return True, None, config

    except ValueError:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
            None
        )

    except Exception as e:
        return False, "was not found on hub!", None


def get_model_size(model_info: ModelInfo, precision: str):
    """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py

    size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
    model_size = size_factor * model_size
    return model_size


def get_model_arch(model_info: ModelInfo):
    """Gets the model architecture from the configuration"""
    return model_info.config.get("architectures", "Unknown")


def already_submitted_models(requested_models_dir: str) -> set[str]:
    """Gather a list of already submitted models to avoid duplicates"""
    depth = 1
    file_names = []
    users_to_submission_dates = defaultdict(list)

    for root, _, files in os.walk(requested_models_dir):
        current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
        if current_depth == depth:
            for file in files:
                if not file.endswith(".json"):
                    continue
                with open(os.path.join(root, file), "r") as f:
                    info = json.load(f)
                    file_names.append(f"{info['model']}_{info['revision']}_{info['track']}")

                    # Select organisation
                    if info["model"].count("/") == 0 or "submitted_time" not in info:
                        continue
                    organisation, _ = info["model"].split("/")
                    users_to_submission_dates[organisation].append(info["submitted_time"])

    return set(file_names), users_to_submission_dates


def is_valid_predictions(predictions: dict) -> tuple[bool, str]:
    out_msg = ""
    for task in TEXT_TASKS:
        if task not in predictions:
            out_msg = f"Error: {task} not present"
            break
        for subtask in TEXT_TASKS[task]:
            if subtask not in predictions[task]:
                out_msg = f"Error: {subtask} not present under {task}"
                break
        if out_msg != "":
            break
    if "vqa" in predictions or "winoground" in predictions or "devbench" in predictions:
        for task in VISION_TASKS:
            if task not in predictions:
                out_msg = f"Error: {task} not present"
                break
            for subtask in VISION_TASKS[task]:
                if subtask not in predictions[task]:
                    out_msg = f"Error: {subtask} not present under {task}"
                    break
            if out_msg != "":
                break
    
    # Make sure all examples have predictions, and that predictions are the correct type
    for task in predictions:
        for subtask in predictions[task]:
            if task == "devbench":
                a = np.array(predictions[task][subtask]["predictions"])
                if subtask == "sem-things":
                    required_shape = (1854, 1854)
                elif subtask == "gram-trog":
                    required_shape = (76, 4, 1)
                elif subtask == "lex-viz_vocab":
                    required_shape = (119, 4, 1)
                if a.shape[0] != required_shape[0] or a.shape[1] != required_shape[1]:
                    out_msg = f"Error: Wrong shape for results for `{subtask}` in `{task}`."
                    break
                if not str(a.dtype).startswith("float"):
                    out_msg = f"Error: Results for `{subtask}` ({task}) \
                        should be floats but aren't."
                    break
                continue
        
            num_expected_examples = NUM_EXPECTED_EXAMPLES[task][subtask]
            if len(predictions[task][subtask]["predictions"]) != num_expected_examples:
                out_msg = f"Error: {subtask} has the wrong number of examples."
                break

            if task == "glue":
                if type(predictions[task][subtask]["predictions"][0]["pred"]) != int:
                    out_msg = f"Error: results for `{subtask}` (`{task}`) should be integers but aren't."
                    break
            else:
                if type(predictions[task][subtask]["predictions"][0]["pred"]) != str:
                    out_msg = f"Error: results for `{subtask}` (`{task}`) should be strings but aren't."
                    break

        if out_msg != "":
            break
        
    if out_msg != "":
        return False, out_msg
    return True, "Upload successful."


def _format_time(earliest_time):
    time_left = (earliest_time.tz_convert("UTC") + timedelta(weeks=1)) - pd.Timestamp.utcnow()
    hours = time_left.seconds // 3600
    minutes, seconds = divmod(time_left.seconds % 3600, 60)
    time_left_formatted = f"{hours:02}:{minutes:02}:{seconds:02}"
    if time_left.days > 0:
        time_left_formatted = f"{time_left.days} days, {time_left_formatted}"
    return time_left_formatted


def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation queues requests"""
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            # if "still_on_hub" in data and data["still_on_hub"]:
            #     data[EvalQueueColumn.model.name] = make_clickable_model(data["hf_repo"], data["model"])
            #     data[EvalQueueColumn.revision.name] = data.get("revision", "main")
            # else:
            #     data[EvalQueueColumn.model.name] = data["model"]
            #     data[EvalQueueColumn.revision.name] = "N/A"

            all_evals.append(data)

        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)
                all_evals.append(data)

    return pd.DataFrame(all_evals)

def check_rate_limit(track, user_name, contact_email):    
    if "Circuit" in track:
        save_path = EVAL_REQUESTS_SUBGRAPH
    else:
        save_path = EVAL_REQUESTS_CAUSALGRAPH

    evaluation_queue = get_evaluation_queue_df(save_path, ["user_name", "contact_email"])

    if evaluation_queue.empty:
        return True, None
    
    one_week_ago = pd.Timestamp.utcnow() - timedelta(weeks=1)
    
    user_name_occurrences = evaluation_queue[evaluation_queue["user_name"] == user_name]
    user_name_occurrences["submit_time"] = pd.to_datetime(user_name_occurrences["submit_time"], utc=True)
    user_name_occurrences = user_name_occurrences[user_name_occurrences["submit_time"] >= one_week_ago]
    email_occurrences = evaluation_queue[evaluation_queue["contact_email"] == contact_email.lower()]
    email_occurrences["submit_time"] = pd.to_datetime(email_occurrences["submit_time"], utc=True)
    email_occurrences = email_occurrences[email_occurrences["submit_time"] >= one_week_ago]
    if user_name_occurrences.shape[0] >= 2:
        earliest_time = user_name_occurrences["submit_time"].min()
        time_left_formatted = _format_time(earliest_time)
        return False, time_left_formatted
    if email_occurrences.shape[0] >= 2:
        earliest_time = email_occurrences["submit_time"].min()
        time_left_formatted = _format_time(earliest_time)
        return False, time_left_formatted
    
    return True, None

def parse_huggingface_url(url: str):
    """
    Extracts repo_id and subfolder path from a Hugging Face URL.
    Returns (repo_id, folder_path).
    """
    # Handle cases where the input is already a repo_id (no URL)
    if not url.startswith(("http://", "https://")):
        return url, None
    
    parsed = urlparse(url)
    path_parts = parsed.path.strip("/").split("/")
    
    # Extract repo_id (username/repo_name)
    if len(path_parts) < 2:
        raise ValueError("Invalid Hugging Face URL: Could not extract repo_id.")
    repo_id = f"{path_parts[0]}/{path_parts[1]}"
    
    # Extract folder path (if in /tree/ or /blob/)
    if "tree" in path_parts or "blob" in path_parts:
        try:
            branch_idx = path_parts.index("tree") if "tree" in path_parts else path_parts.index("blob")
            folder_path = "/".join(path_parts[branch_idx + 2:])  # Skip "tree/main" or "blob/main"
        except (ValueError, IndexError):
            folder_path = None
    else:
        folder_path = None
    
    return repo_id, folder_path


def validate_directory(fs: HfFileSystem, repo_id: str, dirname: str, curr_tm: str, circuit_level:Literal['edge', 'node','neuron']='edge'):
    errors = []
    warnings = []

    task, model = curr_tm.split("_")
    curr_tm_display = curr_tm.replace("_", "/")

    files = fs.ls(dirname)

    # Detect whether multi-circuit or importances
    is_multiple_circuits = False
    files = [f["name"] for f in files if (f["name"].endswith(".json") or f["name"].endswith(".pt"))]
    if len(files) == 1:
        is_multiple_circuits = False
    elif len(files) > 1:
        is_multiple_circuits = True
        if len(files) < 9:
            errors.append(f"Folder for {curr_tm_display} contains multiple circuits, but not enough. If you intended to submit importances, include only one circuit in the folder. Otherwise, please add the rest of the circuits.")
    else:
        warnings.append(f"Directory present for {curr_tm_display} but is empty")
    
    offset = 0
    for idx, file in enumerate(files):
        file_suffix = file.split(repo_id + "/")[1]
        file_url = hf_hub_url(repo_id=repo_id, filename=file_suffix)
        file_info = get_hf_file_metadata(file_url)
        file_size_mb = file_info.size / (1024 * 1024)
        if file_size_mb > 150:
            warnings.append(f"Will skip file >150MB: {file}")
            offset -= 1
            continue

        if is_multiple_circuits and idx + offset >= 9:
            break

    return errors, warnings


def verify_circuit_submission(hf_repo, level, progress=gr.Progress()):
    VALID_COMBINATIONS = [
        "ioi_gpt2", "ioi_qwen2.5", "ioi_gemma2", "ioi_llama3", "ioi_interpbench",
        "mcqa_qwen2.5", "mcqa_gemma2", "mcqa_llama3",
        "arithmetic-addition_llama3", "arithmetic-subtraction_llama3",
        "arc-easy_gemma2", "arc-easy_llama3",
        "arc-challenge_llama3"
    ]

    TASKS = ["ioi", "mcqa", "arithmetic-addition", "arithmetic-subtraction", "arc-easy", "arc-challenge"]
    MODELS = ["gpt2", "qwen2.5", "gemma2", "llama3", "interpbench"]

    errors = []
    warnings = []

    directories_present = {tm: False for tm in VALID_COMBINATIONS}
    directories_valid = {tm: False for tm in VALID_COMBINATIONS}

    fs = HfFileSystem()

    path = hf_repo
    level = level

    folder_path = path.split("huggingface.co/")[1]
    repo_id = "/".join(folder_path.split("/")[:2])
    try:
        files = fs.listdir(folder_path)
    except Exception as e:
        errors.append(f"Could not open Huggingface URL: {e}")
        return errors, warnings

    file_counts = 0
    for dirname in progress.tqdm(files, desc="Validating directories in repo"):
        file_counts += 1
        if file_counts >= 30:
            warnings.append("Folder contains many files/directories; stopped at 30.")
            break
        circuit_dir = dirname["name"]
        dirname_proc = circuit_dir.lower().split("/")[-1]
        if not fs.isdir(circuit_dir):
            continue
        curr_task = None
        curr_model = None
        # Look for task names in filename
        for task in TASKS:
            if dirname_proc.startswith(task) or f"_{task}" in dirname_proc:
                curr_task = task
        # Look for model names in filename
        for model in MODELS:
            if dirname_proc.startswith(model) or f"_{model}" in dirname_proc:
                curr_model = model
        if curr_task is not None and curr_model is not None:
            curr_tm = f"{curr_task}_{curr_model}"
            if curr_tm in VALID_COMBINATIONS:
                directories_present[curr_tm] = True
            else:
                continue
        else:
            continue
        
        # Parse circuits directory
        print(f"validating {circuit_dir}")
        vd_errors, vd_warnings = validate_directory(fs, repo_id, circuit_dir, curr_tm, level)
        errors.extend(vd_errors)
        warnings.extend(vd_warnings)

        if len(vd_errors) == 0:
            directories_valid[curr_tm] = True
    
    task_set, model_set = set(), set()
    for tm in directories_present:
        if not directories_present[tm]:
            continue
        if not directories_valid[tm]:
            warnings.append(f"Directory found for {tm.replace('_', '/')}, but circuits not valid or present")
            continue
        task, model = tm.split("_")
        task_set.add(task)
        model_set.add(model)
    if len(task_set) < 2:
        errors.append("At least 2 tasks are required")
    if len(model_set) < 2:
        errors.append("At least 2 models are required")

    no_tm_display = [tm.replace("_", "/") for tm in directories_valid if not directories_valid[tm]]
    if len(no_tm_display) > 0:
        warnings.append(f"No valid circuits or importance scores found for the following tasks/models: {*no_tm_display,}")
        
    return errors, warnings


def verify_causal_variable_submission(hf_repo, layer, position, code_upload):
    return