Spaces:
Running
Running
File size: 7,327 Bytes
2fc77f5 3c343e0 2fc77f5 3c343e0 2fc77f5 3c343e0 2fc77f5 3c343e0 2fc77f5 e1faa87 3c343e0 5ed4bca 3c343e0 5ed4bca 3c343e0 5ed4bca 3c343e0 e1faa87 3c343e0 5ed4bca 3c343e0 2fc77f5 3c343e0 2fc77f5 3c343e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import json
import os
import smtplib
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_SUBGRAPH, EVAL_REQUESTS_CAUSALGRAPH, TOKEN, QUEUE_REPO_SUBGRAPH, QUEUE_REPO_CAUSALGRAPH
from src.submission.check_validity import (
already_submitted_models,
get_model_size,
is_model_on_hub,
is_valid_predictions,
parse_huggingface_url
)
import gradio as gr
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def upload_to_queue(track, hf_repo_circ, hf_repo_cg, level, method_name, contact_email, _id):
errors = []
hf_repo = hf_repo_circ if "Circuit" in track else hf_repo_cg
repo_id, folder_path, revision = parse_huggingface_url(hf_repo)
try:
user_name, repo_name = repo_id.split("/")
except Exception as e:
errors.append("Error processing HF URL: could not get username and repo name")
if revision is None or revision == "main":
try:
commit_hash = API.list_repo_commits(repo_id)[0].commit_id
except Exception as e:
errors.append("Could not get commit hash of provided Huggingface repo")
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if not errors:
if "Circuit" in track:
eval_entry = {
"hf_repo": hf_repo,
"user_name": user_name,
"revision": commit_hash,
"circuit_level": level.lower(),
"method_name": method_name,
"contact_email": contact_email.lower(),
"submit_time": current_time,
"status": "PREVALIDATION",
"_id": _id
}
QUEUE_REPO = QUEUE_REPO_SUBGRAPH
EVAL_REQUESTS = EVAL_REQUESTS_SUBGRAPH
else:
eval_entry = {
"hf_repo": hf_repo,
"user_name": user_name,
"revision": commit_hash,
"method_name": method_name,
"contact_email": contact_email.lower(),
"submit_time": current_time,
"status": "PREVALIDATION",
"_id": _id
}
QUEUE_REPO = QUEUE_REPO_CAUSALGRAPH
EVAL_REQUESTS = EVAL_REQUESTS_CAUSALGRAPH
OUT_DIR = f"{EVAL_REQUESTS}/"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{method_name}_{_id}_{current_time}.json"
with open(out_path, 'w') as f:
f.write(json.dumps(eval_entry))
try:
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("/")[-1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {method_name}_{_id}_{current_time}.json to eval queue"
)
except Exception as e:
errors.append(f"Could not upload entry to eval queue: {e}")
if errors:
status = gr.Textbox("\n\n".join(f"β {e}" for e in errors), visible=True)
else:
status = gr.Textbox(f"β
Submission received! Your submission ID is \"{_id}\". Save this so that you can manage your submission on the queue.", visible=True)
return [
status,
None, None,
gr.Column(visible=False)
]
def add_new_eval(
model_name: str,
model_id: str,
revision: str,
track: str,
predictions: dict,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
out_message = ""
user_name = ""
model_path = model_name
if "/" in model_name:
user_name = model_name.split("/")[0]
model_path = model_name.split("/")[1]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if track is None:
return styled_error("Please select a track.")
# Does the model actually exist?
if revision == "":
revision = "main"
out_message = ""
# Is the model info correctly filled?
print("Made it before 1")
try:
model_info = API.model_info(repo_id=model_id, revision=revision)
except Exception:
out_message += styled_warning("Could not get your model information. The leaderboard entry will not have a link to its HF repo.") + "<br>"
print("Made it after 1")
try:
predictions_OK, error_msg = is_valid_predictions(predictions)
if not predictions_OK:
return styled_error(error_msg) + "<br>"
except:
return styled_error(error_msg) + "<br>"
print("Made it after 3")
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model_name": model_name,
"hf_repo": model_id,
"revision": revision,
"track": track,
"predictions": predictions,
"status": "PENDING",
"submitted_time": current_time,
}
print("Made it after 4")
# Check for duplicate submission
if f"{model_name}_{revision}_{track}" in REQUESTED_MODELS:
return styled_error("A model with this name has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_{revision}_eval_request_False_{track}.json"
print("Made it after 5")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
print("Made it after 6")
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the request to show in the PENDING list."
)
def remove_submission(track: str, method_name: str, _id: str):
if track is None:
return gr.Textbox(f"Please select a track.", visible=True)
if "Circuit" in track:
QUEUE_REPO = QUEUE_REPO_SUBGRAPH
EVAL_REQUESTS = EVAL_REQUESTS_SUBGRAPH
else:
QUEUE_REPO = QUEUE_REPO_CAUSALGRAPH
EVAL_REQUESTS = EVAL_REQUESTS_CAUSALGRAPH
OUT_DIR = f"{EVAL_REQUESTS}/"
os.makedirs(OUT_DIR, exist_ok=True)
files = os.listdir(OUT_DIR)
out_paths = [f for f in files if f.startswith(f"{method_name}_{_id}")]
if out_paths:
filename = out_paths[0]
filepath = os.path.join(OUT_DIR, filename)
with open(filepath, 'r') as f:
data = json.load(f)
hf_repo = data["hf_repo"]
try:
API.delete_file(
path_in_repo=filename,
repo_id=QUEUE_REPO,
repo_type="dataset"
)
except Exception as e:
return gr.Textbox(f"Could not delete entry from eval queue: {e}", visible=True)
os.remove(filepath)
status = "Submission removed from queue."
else:
status = "Submission not found in queue."
return gr.Textbox(status, visible=True) |