File size: 32,594 Bytes
1d8e193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO
from dataclasses import dataclass, field

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    BENCHMARK_COLS_MULTIMODAL,
    BENCHMARK_COLS_MIB_SUBGRAPH,
    BENCHMARK_COLS_MIB_CAUSALGRAPH,
    COLS,
    COLS_MIB_SUBGRAPH,
    COLS_MIB_CAUSALGRAPH,
    COLS_MULTIMODAL,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    AutoEvalColumn_mib_subgraph,
    AutoEvalColumn_mib_causalgraph,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph
from src.submission.submit import add_new_eval


from src.about import TasksMib_Subgraph

# class SmartSelectColumns(SelectColumns):
#     """
#     Enhanced SelectColumns component with basic filtering functionality.
#     """
#     def __init__(
#         self,
#         benchmark_keywords: Optional[List[str]] = None,
#         model_keywords: Optional[List[str]] = None,
#         initial_selected: Optional[List[str]] = None,
#         **kwargs
#     ):
#         """
#         Initialize SmartSelectColumns with minimal configuration.
        
#         Args:
#             benchmark_keywords: List of benchmark names to filter by
#             model_keywords: List of model names to filter by
#             initial_selected: List of columns to show initially
#         """
#         super().__init__(**kwargs)
#         self.benchmark_keywords = benchmark_keywords or []
#         self.model_keywords = model_keywords or []
#         self.initial_selected = initial_selected or []

#     def get_filtered_groups(self, df: pd.DataFrame) -> Dict[str, List[str]]:
#         """
#         Create column groups based on simple substring matching.
#         """
#         filtered_groups = {}
        
#         # Create benchmark groups
#         for benchmark in self.benchmark_keywords:
#             matching_cols = [
#                 col for col in df.columns 
#                 if benchmark in col.lower()
#             ]
#             if matching_cols:
#                 group_name = f"Benchmark group for {benchmark}"
#                 filtered_groups[group_name] = matching_cols
        
#         # Create model groups
#         for model in self.model_keywords:
#             matching_cols = [
#                 col for col in df.columns 
#                 if model in col.lower()
#             ]
#             if matching_cols:
#                 group_name = f"Model group for {model}"
#                 filtered_groups[group_name] = matching_cols
        
#         return filtered_groups

#     def update(
#         self, 
#         value: Union[pd.DataFrame, Dict[str, List[str]], Any]
#     ) -> Dict:
#         """Update component with new values."""
#         if isinstance(value, pd.DataFrame):
#             choices = list(value.columns)
#             selected = self.initial_selected if self.initial_selected else choices
#             filtered_cols = self.get_filtered_groups(value)
            
#             return {
#                 "choices": choices,
#                 "value": selected,
#                 "filtered_cols": filtered_cols
#             }
        
#         if hasattr(value, '__dataclass_fields__'):
#             field_names = [field.name for field in fields(value)]
#             return {
#                 "choices": field_names,
#                 "value": self.initial_selected if self.initial_selected else field_names
#             }
            
#         return super().update(value)

from gradio.events import Dependency

class ModifiedLeaderboard(Leaderboard):
    """Extends Leaderboard to support substring-based column filtering"""
    
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        
        # Process substring groups if they exist
        if (isinstance(self.select_columns_config, SelectColumns) and 
            self.select_columns_config.substring_groups):
            
            self.process_substring_groups()
    
    def process_substring_groups(self):
        """Processes substring groups to add them to the selectable columns"""
        groups = self.select_columns_config.substring_groups
        if not groups:
            return
            
        # Create a mapping of group name to matching columns
        group_to_columns = {}
        for group_name, patterns in groups.groups.items():
            matching_cols = set()
            for pattern in patterns:
                regex = re.compile(pattern.replace('*', '.*'))
                matching_cols.update(
                    col for col in self.headers 
                    if regex.search(col)
                )
            if matching_cols:
                group_to_columns[group_name] = list(matching_cols)
        
        # Add groups to the headers and update column selection logic
        self.group_to_columns = group_to_columns
        self.original_headers = self.headers.copy()
        
        # Add group names to the start of headers
        self.headers = list(group_to_columns.keys()) + self.original_headers
        
        # Update default selection to include groups
        if self.select_columns_config.default_selection:
            self.select_columns_config.default_selection = (
                list(group_to_columns.keys()) + 
                self.select_columns_config.default_selection
            )

    def preprocess(self, payload):
        """Override preprocess to handle group selection"""
        df = super().preprocess(payload)
        
        # If we don't have substring groups, return normally
        if not hasattr(self, 'group_to_columns'):
            return df
            
        # Process group selections
        selected_columns = set()
        for column in payload.headers:
            if column in self.group_to_columns:
                # If a group is selected, add all its columns
                selected_columns.update(self.group_to_columns[column])
            elif column in self.original_headers:
                # Add individually selected columns
                selected_columns.add(column)
        
        # Return DataFrame with only selected columns
        return df[list(selected_columns)]
    from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING
    from gradio.blocks import Block
    if TYPE_CHECKING:
        from gradio.components import Timer

from gradio_leaderboard import SelectColumns, Leaderboard
import pandas as pd
from typing import List, Dict, Optional
from dataclasses import fields

class SmartSelectColumns(SelectColumns):
    """
    Enhanced SelectColumns component matching exact original parameters.
    """
    def __init__(
        self,
        benchmark_keywords: Optional[List[str]] = None,
        model_keywords: Optional[List[str]] = None,
        initial_selected: Optional[List[str]] = None,
        label: Optional[str] = None,
        show_label: bool = True,
        info: Optional[str] = None,
        allow: bool = True
    ):
        # Match exact parameters from working SelectColumns
        super().__init__(
            default_selection=initial_selected or [],
            cant_deselect=[],
            allow=allow,
            label=label,
            show_label=show_label,
            info=info
        )
        
        self.benchmark_keywords = benchmark_keywords or []
        self.model_keywords = model_keywords or []
        
        # Store groups for later use
        self._groups = {}
    
    def get_filtered_groups(self, columns: List[str]) -> Dict[str, List[str]]:
        """Get column groups based on keywords."""
        filtered_groups = {}
        
        # Add benchmark groups
        for benchmark in self.benchmark_keywords:
            matching_cols = [
                col for col in columns 
                if benchmark in col.lower()
            ]
            if matching_cols:
                filtered_groups[f"Benchmark group for {benchmark}"] = matching_cols
        
        # Add model groups
        for model in self.model_keywords:
            matching_cols = [
                col for col in columns 
                if model in col.lower()
            ]
            if matching_cols:
                filtered_groups[f"Model group for {model}"] = matching_cols
                
        self._groups = filtered_groups
        return filtered_groups


import re
@dataclass
class SubstringSelectColumns(SelectColumns):
    """
    Extends SelectColumns to support filtering columns by predefined substrings.
    When a substring is selected, all columns containing that substring will be selected.
    """
    substring_groups: Dict[str, List[str]] = field(default_factory=dict)
    selected_substrings: List[str] = field(default_factory=list)
    
    def __post_init__(self):
        # Ensure default_selection is a list
        if self.default_selection is None:
            self.default_selection = []
            
        # Build reverse mapping of column to substrings
        self.column_to_substrings = {}
        for substring, patterns in self.substring_groups.items():
            for pattern in patterns:
                # Convert glob-style patterns to regex
                regex = re.compile(pattern.replace('*', '.*'))
                # Find matching columns in default_selection
                for col in self.default_selection:
                    if regex.search(col):
                        if col not in self.column_to_substrings:
                            self.column_to_substrings[col] = []
                        self.column_to_substrings[col].append(substring)
        
        # Apply initial substring selections
        if self.selected_substrings:
            self.update_selection_from_substrings()
    
    def update_selection_from_substrings(self) -> List[str]:
        """
        Updates the column selection based on selected substrings.
        Returns the new list of selected columns.
        """
        selected_columns = self.cant_deselect.copy()
        
        # If no substrings selected, show all columns
        if not self.selected_substrings:
            selected_columns.extend([
                col for col in self.default_selection 
                if col not in self.cant_deselect
            ])
            return selected_columns
        
        # Add columns that match any selected substring
        for col, substrings in self.column_to_substrings.items():
            if any(s in self.selected_substrings for s in substrings):
                if col not in selected_columns:
                    selected_columns.append(col)
                    
        return selected_columns





def restart_space():
    API.restart_space(repo_id=REPO_ID)



### Space initialisation
try:
    # print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


try:
    # print(RESULTS_REPO_MIB_SUBGRAPH)
    snapshot_download(
        repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


try:
    # print(RESULTS_REPO_MIB_CAUSALGRAPH)
    snapshot_download(
        repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()



LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH)

# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH)
# In app.py, modify the LEADERBOARD initialization
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph(
    EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, 
    EVAL_REQUESTS_PATH, 
    COLS_MIB_CAUSALGRAPH, 
    BENCHMARK_COLS_MIB_CAUSALGRAPH
)


# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)





# def init_leaderboard_mib_subgraph(dataframe, track):
#     # print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
    
#     if dataframe is None or dataframe.empty:
#         raise ValueError("Leaderboard DataFrame is empty or None.")

#     # filter for correct track
#     # dataframe = dataframe.loc[dataframe["Track"] == track]

#     # print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
    
#     return Leaderboard(
#         value=dataframe,
#         datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
#         select_columns=SelectColumns(
#             default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
#             cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
#             label="Select Columns to Display:",
#         ),
#         search_columns=["Method"],  # Changed from AutoEvalColumn_mib_subgraph.model.name to "Method"
#         hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
#         bool_checkboxgroup_label="Hide models",
#         interactive=False,
#     )





# def init_leaderboard_mib_subgraph(dataframe, track):
#     """Initialize the subgraph leaderboard with grouped column selection by benchmark."""
#     if dataframe is None or dataframe.empty:
#         raise ValueError("Leaderboard DataFrame is empty or None.")

#     print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
    
#     # Create groups of columns by benchmark
#     benchmark_groups = []
    
#     # For each benchmark in our TasksMib_Subgraph enum...
#     for task in TasksMib_Subgraph:
#         benchmark = task.value.benchmark
#         # Get all valid columns for this benchmark's models
#         benchmark_cols = [
#             f"{benchmark}_{model}"
#             for model in task.value.models
#             if f"{benchmark}_{model}" in dataframe.columns
#         ]
#         if benchmark_cols:  # Only add if we have valid columns
#             benchmark_groups.append(benchmark_cols)
#             print(f"\nBenchmark group for {benchmark}:", benchmark_cols)

#     # Create model groups as well
#     model_groups = []
#     all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
    
#     # For each unique model...
#     for model in all_models:
#         # Get all valid columns for this model across benchmarks
#         model_cols = [
#             f"{task.value.benchmark}_{model}"
#             for task in TasksMib_Subgraph
#             if model in task.value.models
#             and f"{task.value.benchmark}_{model}" in dataframe.columns
#         ]
#         if model_cols:  # Only add if we have valid columns
#             model_groups.append(model_cols)
#             print(f"\nModel group for {model}:", model_cols)

#     # Combine all groups
#     all_groups = benchmark_groups + model_groups
    
#     # Flatten groups for default selection (show everything initially)
#     all_columns = [col for group in all_groups for col in group]
#     print("\nAll available columns:", all_columns)

#     return Leaderboard(
#         value=dataframe,
#         datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
#         select_columns=SelectColumns(
#             default_selection=all_columns,  # Show all columns initially
#             label="Select Results:"
#         ),
#         search_columns=["Method"],
#         hide_columns=[],
#         interactive=False,
#     )


def init_leaderboard_mib_subgraph(dataframe, track):
    """Initialize the subgraph leaderboard with display names for better readability."""
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
    
    # First, create our display name mapping
    # This is like creating a translation dictionary between internal names and display names
    model_name_mapping = {
        "qwen2_5": "Qwen-2.5",
        "gpt2": "GPT-2",
        "gemma2": "Gemma-2",
        "llama3": "Llama-3.1"
    }

    benchmark_mapping = {
        "ioi": "IOI",
        "mcqa": "MCQA",
        "arithmetic_addition": "Arithmetic (+)",
        "arithmetic_subtraction": "Arithmetic (-)",
        "arc_easy": "ARC (Easy)",
        "arc_challenge": "ARC (Challenge)"
    }

    display_mapping = {}
    for task in TasksMib_Subgraph:
        for model in task.value.models:
            field_name = f"{task.value.benchmark}_{model}"
            display_name = f"{benchmark_mapping[task.value.benchmark]} - {model_name_mapping[model]}"
            display_mapping[field_name] = display_name
    

    # Now when creating benchmark groups, we'll use display names
    benchmark_groups = []
    for task in TasksMib_Subgraph:
        benchmark = task.value.benchmark
        benchmark_cols = [
            display_mapping[f"{benchmark}_{model}"]  # Use display name from our mapping
            for model in task.value.models
            if f"{benchmark}_{model}" in dataframe.columns
        ]
        if benchmark_cols:
            benchmark_groups.append(benchmark_cols)
            print(f"\nBenchmark group for {benchmark}:", benchmark_cols)

    # Similarly for model groups
    model_groups = []
    all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
    
    for model in all_models:
        model_cols = [
            display_mapping[f"{task.value.benchmark}_{model}"]  # Use display name
            for task in TasksMib_Subgraph
            if model in task.value.models
            and f"{task.value.benchmark}_{model}" in dataframe.columns
        ]
        if model_cols:
            model_groups.append(model_cols)
            print(f"\nModel group for {model}:", model_cols)

    # Combine all groups using display names
    all_groups = benchmark_groups + model_groups
    all_columns = [col for group in all_groups for col in group]

    # Important: We need to rename our DataFrame columns to match display names
    
    renamed_df = dataframe.rename(columns=display_mapping)
    # all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default]
    # all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph)]
    all_columns = renamed_df.columns.tolist()

    print(benchmark_groups)
    print(model_groups)
    filter_groups = {"ioi": "*IOI*",
                     "llama": "*Llama*"}


    # Original code 
    return ModifiedLeaderboard(
        value=renamed_df,  # Use DataFrame with display names
        datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
        select_columns=SubstringSelectColumns(
            substring_groups=filter_groups,
            default_selection=all_columns,  # Now contains display names
            label="Filter Results:",
            allow=True
        ),
        search_columns=["Method"],
        hide_columns=[],
        interactive=False,
    )
    



    # # Complete column groups for both benchmarks and models
    # # Define keywords for filtering
    # benchmark_keywords = ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"]
    # model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"]

    # # Optional: Define display names
    # mappings = {
    #     "ioi_llama3": "IOI (LLaMA-3)",
    #     "ioi_qwen2_5": "IOI (Qwen-2.5)",
    #     "ioi_gpt2": "IOI (GPT-2)",
    #     "ioi_gemma2": "IOI (Gemma-2)",
    #     "mcqa_llama3": "MCQA (LLaMA-3)",
    #     "mcqa_qwen2_5": "MCQA (Qwen-2.5)",
    #     "mcqa_gemma2": "MCQA (Gemma-2)",
    #     "arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)",
    #     "arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)",
    #     "arc_easy_llama3": "ARC Easy (LLaMA-3)",
    #     "arc_easy_gemma2": "ARC Easy (Gemma-2)",
    #     "arc_challenge_llama3": "ARC Challenge (LLaMA-3)",
    #     "eval_name": "Evaluation Name",
    #     "Method": "Method",
    #     "Average": "Average Score"
    # }
    # # mappings = {}

    # # Create SmartSelectColumns instance
    # smart_columns = SmartSelectColumns(
    #     benchmark_keywords=benchmark_keywords,
    #     model_keywords=model_keywords,
    #     column_mapping=mappings,
    #     initial_selected=["Method", "Average"]
    # )

    # print("\nDebugging DataFrame columns:", renamed_df.columns.tolist())

    # # Create Leaderboard
    # leaderboard = Leaderboard(
    #     value=renamed_df,
    #     datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
    #     select_columns=smart_columns,
    #     search_columns=["Method"],
    #     hide_columns=[],
    #     interactive=False
    # )
    # print(f"Successfully created leaderboard.")
    # return leaderboard

    # print("\nDebugging DataFrame columns:", dataframe.columns.tolist())

    # # Define simple keywords for filtering
    # benchmark_keywords = ["ioi", "mcqa", "arithmetic", "arc"]
    # model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"]

    # # Create SmartSelectColumns instance with exact same parameters as working version
    # smart_columns = SmartSelectColumns(
    #     benchmark_keywords=benchmark_keywords,
    #     model_keywords=model_keywords,
    #     initial_selected=["Method", "Average"],
    #     allow=True,
    #     label=None,
    #     show_label=True,
    #     info=None
    # )

    # try:
    #     print("\nCreating leaderboard...")
    #     # Get groups before creating leaderboard
    #     smart_columns.get_filtered_groups(dataframe.columns)
        
    #     leaderboard = Leaderboard(
    #         value=dataframe,
    #         datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
    #         select_columns=smart_columns,
    #         search_columns=["Method"],
    #         hide_columns=[],
    #         interactive=False
    #     )
    #     print("Leaderboard created successfully")
    #     return leaderboard
        
    # except Exception as e:
    #     print("Error creating leaderboard:", str(e))
    #     raise






# def init_leaderboard_mib_subgraph(dataframe, track):
#     """Initialize the subgraph leaderboard with group-based column selection."""
#     if dataframe is None or dataframe.empty:
#         raise ValueError("Leaderboard DataFrame is empty or None.")

#     print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
    
#     # Create selection mapping for benchmark groups
#     selection_mapping = {}
    
#     # Create benchmark groups with descriptive names
#     for task in TasksMib_Subgraph:
#         benchmark = task.value.benchmark
#         # Get all columns for this benchmark's models
#         benchmark_cols = [
#             f"{benchmark}_{model}"
#             for model in task.value.models
#             if f"{benchmark}_{model}" in dataframe.columns
#         ]
#         if benchmark_cols:
#             # Use a descriptive group name as the key
#             group_name = f"Benchmark: {benchmark.upper()}"
#             selection_mapping[group_name] = benchmark_cols
#             print(f"\n{group_name} maps to:", benchmark_cols)

#     # Create model groups with descriptive names
#     all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
#     for model in all_models:
#         # Get all columns for this model across benchmarks
#         model_cols = [
#             f"{task.value.benchmark}_{model}"
#             for task in TasksMib_Subgraph
#             if model in task.value.models
#             and f"{task.value.benchmark}_{model}" in dataframe.columns
#         ]
#         if model_cols:
#             # Use a descriptive group name as the key
#             group_name = f"Model: {model}"
#             selection_mapping[group_name] = model_cols
#             print(f"\n{group_name} maps to:", model_cols)

#     # The selection options are the group names
#     selection_options = list(selection_mapping.keys())
#     print("\nSelection options:", selection_options)

#     return Leaderboard(
#         value=dataframe,
#         datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
#         select_columns=SelectColumns(
#             default_selection=selection_options,  # Show all groups by default
#             label="Select Benchmark or Model Groups:"
#         ),
#         search_columns=["Method"],
#         hide_columns=[],
#         interactive=False,
#     )








# def init_leaderboard_mib_causalgraph(dataframe, track):
#     # print("Debugging column issues:")
#     # print("\nActual DataFrame columns:")
#     # print(dataframe.columns.tolist())
    
#     # print("\nExpected columns for Leaderboard:")
#     expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
#     # print(expected_cols)
    
#     # print("\nMissing columns:")
#     missing_cols = [col for col in expected_cols if col not in dataframe.columns]
#     # print(missing_cols)
    
#     # print("\nSample of DataFrame content:")
#     # print(dataframe.head().to_string())

#     return Leaderboard(
#         value=dataframe,
#         datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
#         select_columns=SelectColumns(
#             default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default],
#             cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden],
#             label="Select Columns to Display:",
#         ),
#         search_columns=["Method"],
#         hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden],
#         bool_checkboxgroup_label="Hide models",
#         interactive=False,
#     )

def init_leaderboard_mib_causalgraph(dataframe, track):
    # print("Debugging column issues:")
    # print("\nActual DataFrame columns:")
    # print(dataframe.columns.tolist())
    
    # Create only necessary columns
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
        select_columns=SelectColumns(
            default_selection=["Method"],  # Start with just Method column
            cant_deselect=["Method"],      # Method column should always be visible
            label="Select Columns to Display:",
        ),
        search_columns=["Method"],
        hide_columns=[],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


def init_leaderboard(dataframe, track):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    # filter for correct track
    dataframe = dataframe.loc[dataframe["Track"] == track]

    # print(f"\n\n\n dataframe is {dataframe}\n\n\n")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

def process_json(temp_file):
    if temp_file is None:
        return {}

    # Handle file upload
    try:
        file_path = temp_file.name
        if file_path.endswith('.gz'):
            with gzip.open(file_path, 'rt') as f:
                data = json.load(f)
        else:
            with open(file_path, 'r') as f:
                data = json.load(f)
    except Exception as e:
        raise gr.Error(f"Error processing file: {str(e)}")

    gr.Markdown("Upload successful!")
    return data


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
        # with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
        # with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")

        # with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
        # with gr.TabItem("πŸ‘Ά Submit", elem_id="llm-benchmark-tab-table", id=5):
        #     with gr.Column():
        #         with gr.Row():                                                                                                           
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
        
        # with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
        #     leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
        with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
            # Add description for filters
            gr.Markdown("""
            ### Filtering Options
            Use the dropdown menus below to filter results by specific tasks or models. 
            You can combine filters to see specific task-model combinations.
            """)
            leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
            print(f"Leaderboard is {leaderboard}")
    
        # Then modify the Causal Graph tab section
        with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
            with gr.Tabs() as causalgraph_tabs:
                with gr.TabItem("Detailed View", id=0):
                    leaderboard_detailed = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, 
                        "Causal Graph"
                    )
                with gr.TabItem("Aggregated View", id=1):
                    leaderboard_aggregated = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, 
                        "Causal Graph"
                    )
                with gr.TabItem("Intervention Averaged", id=2):
                    leaderboard_averaged = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED, 
                        "Causal Graph"
                    )
        
    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)