Spaces:
Running
Running
File size: 28,233 Bytes
2fc77f5 3c343e0 2fc77f5 3c343e0 2fc77f5 e1faa87 2fc77f5 3c343e0 2fc77f5 3c343e0 2fc77f5 e1faa87 2fc77f5 3c343e0 2fc77f5 3c343e0 2fc77f5 3c343e0 f3dc264 3c343e0 76d8df4 3c343e0 f3dc264 3c343e0 5ed4bca 3c343e0 5ed4bca 3c343e0 5ed4bca 3c343e0 5ed4bca 3c343e0 e1faa87 3c343e0 e1faa87 5ed4bca 3c343e0 e1faa87 3c343e0 e1faa87 089bf5a e1faa87 089bf5a e1faa87 ae2cd7a e1faa87 1a2605d e1faa87 1a2605d e1faa87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
import json
import os
import shutil
import re
import numpy as np
import pandas as pd
import gradio as gr
from urllib.parse import urlparse
from collections import defaultdict
from datetime import datetime, timedelta, timezone
from typing import Literal, Tuple, Union
from huggingface_hub import HfApi, HfFileSystem, hf_hub_url, get_hf_file_metadata
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer
from src.envs import EVAL_REQUESTS_SUBGRAPH, EVAL_REQUESTS_CAUSALGRAPH
TASKS = ["ioi", "mcqa", "arithmetic-addition", "arithmetic-subtraction", "arc-easy", "arc-challenge"]
MODELS = ["gpt2", "qwen2.5", "gemma2", "llama3", "interpbench"]
class FeaturizerValidator:
def __init__(self, base_featurizer_class):
self.base_featurizer_class = base_featurizer_class
self.featurizer_class_name = None
# torch.nn.Module
self.module_value, self.module_attr = "torch", "Module"
self.featurizer_module_class_name_1 = None
self.featurizer_module_class_name_2 = None
def find_featurizer_subclass(self, module_path: str) -> Tuple[bool, Union[str, None]]:
"""
Finds the first class in the module that inherits from Featurizer.
Args:
module_path: Path to the uploaded Python file
Returns:
Tuple of (success, class_name, message)
"""
# First try with AST for safety
try:
with open(module_path, 'r') as file:
tree = ast.parse(file.read(), filename=module_path)
for node in ast.walk(tree):
if isinstance(node, ast.ClassDef):
for base in node.bases:
if isinstance(base, ast.Name) and base.id == self.base_featurizer_class.__name__:
return True, node.name, f"Found class '{node.name}' that inherits from {self.base_featurizer_class.__name__}"
return False, None, f"No class inheriting from {self.base_featurizer_class.__name__} found"
except Exception as e:
return False, None, f"Error during static analysis: {str(e)}"
def find_featurizer_module_classes(self, module_path: str) -> Tuple[bool, Union[str, None]]:
try:
with open(module_path, 'r') as file:
tree = ast.parse(file.read(), filename=module_path)
for node in ast.walk(tree):
if isinstance(node, ast.ClassDef):
for base in node.bases:
if (isinstance(base, ast.Attribute) and base.attr == self.module_attr):
if self.featurizer_module_class_name_1 is None:
self.featurizer_module_class_name_1 = node.name
else:
self.featurizer_module_class_name_2 = node.name
return True, f"Found two featurizer modules: {self.featurizer_module_class_name_1}, {self.featurizer_module_class_name_2}"
if self.featurizer_module_class_name_1:
return True, f"Found one featurizer module: {self.featurizer_module_class_name_1}"
return False, f"Found no featurizer modules."
except Exception as e:
return False, f"Error during static analysis: {e}"
def validate_uploaded_module(self, module_path: str) -> Tuple[bool, str]:
"""
Validates an uploaded module to ensure it properly extends the Featurizer class.
Args:
module_path: Path to the uploaded Python file
class_name: Name of the class to validate
Returns:
Tuple of (is_valid, message)
"""
# First, find the name of the featurizer class we're verifying
found, class_name, message = self.find_featurizer_subclass(module_path)
if not found:
return False, message
else:
print("Verified featurizer subclass.")
# Second, find the name of the featurizer and inverse featurizer modules
modules_found, modules_message = self.find_featurizer_module_classes(module_path)
if not modules_found:
return False, modules_message
else:
print(f"Verified featurizer module(s): {modules_message}")
# Then, perform static code analysis on the featurizer class for basic safety
inheritance_check, ast_message = self._verify_inheritance_with_ast(module_path, class_name)
if not inheritance_check:
return False, ast_message
# Then, try to load and validate the featurizer class
return self._verify_inheritance_with_import(module_path, class_name)
# TODO: try directly loading featurizer module and inverse featurizer module?
def _verify_inheritance_with_ast(self, module_path: str, class_name: str) -> Tuple[bool, str]:
"""Verify inheritance using AST without executing code"""
try:
with open(module_path, 'r') as file:
tree = ast.parse(file.read(), filename=module_path)
# Look for class definitions that match the target class name
for node in ast.walk(tree):
if isinstance(node, ast.ClassDef) and node.name == class_name:
# Check if any base class name matches 'Featurizer'
for base in node.bases:
if isinstance(base, ast.Name) and base.id == self.base_featurizer_class.__name__:
return True, "Static analysis indicates proper inheritance"
return False, f"Class '{class_name}' does not appear to inherit from {self.base_featurizer_class.__name__}"
return False, f"Class '{class_name}' not found in the uploaded module"
except Exception as e:
return False, f"Error during static analysis: {str(e)}"
def _verify_inheritance_with_import(self, module_path: str, class_name: str) -> Tuple[bool, str]:
"""Safely import the module and verify inheritance using Python's introspection"""
try:
# Dynamically import the module
spec = importlib.util.spec_from_file_location("uploaded_module", module_path)
if spec is None or spec.loader is None:
return False, "Could not load the module specification"
uploaded_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(uploaded_module)
# Get the class from the module
if not hasattr(uploaded_module, class_name):
return False, f"Class '{class_name}' not found in the uploaded module"
uploaded_class = getattr(uploaded_module, class_name)
# Check if it's a proper subclass
if not inspect.isclass(uploaded_class):
return False, f"'{class_name}' is not a class"
if not issubclass(uploaded_class, self.base_featurizer_class):
return False, f"'{class_name}' does not inherit from {self.base_featurizer_class.__name__}"
# Optional: Check method resolution order
mro = inspect.getmro(uploaded_class)
if self.base_featurizer_class not in mro:
return False, f"{self.base_featurizer_class.__name__} not in the method resolution order"
return True, f"Class '{class_name}' properly extends {self.base_featurizer_class.__name__}"
except Exception as e:
return False, f"Error during dynamic validation: {str(e)}"
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
try:
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
if test_tokenizer:
try:
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None
)
except Exception as e:
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None
)
except Exception as e:
return False, "was not found on hub!", None
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def get_model_arch(model_info: ModelInfo):
"""Gets the model architecture from the configuration"""
return model_info.config.get("architectures", "Unknown")
def already_submitted_models(requested_models_dir: str) -> set[str]:
"""Gather a list of already submitted models to avoid duplicates"""
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
file_names.append(f"{info['model']}_{info['revision']}_{info['track']}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
organisation, _ = info["model"].split("/")
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
def _format_time(earliest_time):
time_left = (earliest_time.tz_convert("UTC") + timedelta(weeks=1)) - pd.Timestamp.utcnow()
hours = time_left.seconds // 3600
minutes, seconds = divmod(time_left.seconds % 3600, 60)
time_left_formatted = f"{hours:02}:{minutes:02}:{seconds:02}"
if time_left.days > 0:
time_left_formatted = f"{time_left.days} days, {time_left_formatted}"
return time_left_formatted
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requests"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
# if "still_on_hub" in data and data["still_on_hub"]:
# data[EvalQueueColumn.model.name] = make_clickable_model(data["hf_repo"], data["model"])
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
# else:
# data[EvalQueueColumn.model.name] = data["model"]
# data[EvalQueueColumn.revision.name] = "N/A"
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
all_evals.append(data)
return pd.DataFrame(all_evals)
def check_rate_limit(track, user_name, contact_email):
if "Circuit" in track:
save_path = EVAL_REQUESTS_SUBGRAPH
else:
save_path = EVAL_REQUESTS_CAUSALGRAPH
evaluation_queue = get_evaluation_queue_df(save_path, ["user_name", "contact_email"])
if evaluation_queue.empty or user_name == "atticusg" or user_name == "yiksiu":
return True, None
one_week_ago = pd.Timestamp.utcnow() - timedelta(weeks=1)
user_name_occurrences = evaluation_queue[evaluation_queue["user_name"] == user_name]
user_name_occurrences["submit_time"] = pd.to_datetime(user_name_occurrences["submit_time"], utc=True)
user_name_occurrences = user_name_occurrences[user_name_occurrences["submit_time"] >= one_week_ago]
email_occurrences = evaluation_queue[evaluation_queue["contact_email"] == contact_email.lower()]
email_occurrences["submit_time"] = pd.to_datetime(email_occurrences["submit_time"], utc=True)
email_occurrences = email_occurrences[email_occurrences["submit_time"] >= one_week_ago]
if user_name_occurrences.shape[0] >= 2:
earliest_time = user_name_occurrences["submit_time"].min()
time_left_formatted = _format_time(earliest_time)
return False, time_left_formatted
if email_occurrences.shape[0] >= 2:
earliest_time = email_occurrences["submit_time"].min()
time_left_formatted = _format_time(earliest_time)
return False, time_left_formatted
return True, None
def parse_huggingface_url(url: str):
"""
Extracts repo_id and subfolder path from a Hugging Face URL.
Returns (repo_id, folder_path).
"""
# Handle cases where the input is already a repo_id (no URL)
if not url.startswith(("http://", "https://")):
return url, None
parsed = urlparse(url)
path_parts = parsed.path.strip("/").split("/")
revision = "main"
# Extract repo_id (username/repo_name)
if len(path_parts) < 2:
return None, None, None # Can't extract repo_id
else:
repo_id = f"{path_parts[0]}/{path_parts[1]}"
# Extract folder path (if in /tree/ or /blob/)
if "tree" in path_parts or "blob" in path_parts:
try:
branch_idx = path_parts.index("tree") if "tree" in path_parts else path_parts.index("blob")
folder_path = "/".join(path_parts[branch_idx + 2:]) # Skip "tree/main" or "blob/main"
revision = path_parts[branch_idx + 1]
except (ValueError, IndexError):
folder_path = None
else:
folder_path = None
return repo_id, folder_path, revision
def validate_directory_circuit(fs: HfFileSystem, repo_id: str, dirname: str, curr_tm: str, circuit_level:Literal['edge', 'node','neuron']='edge'):
errors = []
warnings = []
task, model = curr_tm.split("_")
curr_tm_display = curr_tm.replace("_", "/")
files = fs.ls(dirname)
# Detect whether multi-circuit or importances
is_multiple_circuits = False
files = [f["name"] for f in files if (f["name"].endswith(".json") or f["name"].endswith(".pt"))]
if len(files) == 1:
is_multiple_circuits = False
elif len(files) > 1:
is_multiple_circuits = True
if len(files) < 9:
errors.append(f"Folder for {curr_tm_display} contains multiple circuits, but not enough. If you intended to submit importances, include only one circuit in the folder. Otherwise, please add the rest of the circuits.")
else:
warnings.append(f"Directory present for {curr_tm_display} but is empty")
offset = 0
for idx, file in enumerate(files):
file_suffix = file.split(repo_id + "/")[1]
file_url = hf_hub_url(repo_id=repo_id, filename=file_suffix)
file_info = get_hf_file_metadata(file_url)
file_size_mb = file_info.size / (1024 * 1024)
if file_size_mb > 150:
warnings.append(f"Will skip file >150MB: {file}")
offset -= 1
continue
if is_multiple_circuits and idx + offset >= 9:
break
return errors, warnings
def verify_circuit_submission(hf_repo, level, progress=gr.Progress()):
VALID_COMBINATIONS = [
"ioi_gpt2", "ioi_qwen2.5", "ioi_gemma2", "ioi_llama3", "ioi_interpbench",
"mcqa_qwen2.5", "mcqa_gemma2", "mcqa_llama3",
"arithmetic-addition_llama3", "arithmetic-subtraction_llama3",
"arc-easy_gemma2", "arc-easy_llama3",
"arc-challenge_llama3"
]
errors = []
warnings = []
directories_present = {tm: False for tm in VALID_COMBINATIONS}
directories_valid = {tm: False for tm in VALID_COMBINATIONS}
fs = HfFileSystem()
path = hf_repo
level = level
try:
repo_id, folder_path, revision = parse_huggingface_url(hf_repo)
folder_path = repo_id + "/" + folder_path
files = fs.listdir(folder_path, revision=revision)
except Exception as e:
errors.append(f"Could not open Huggingface URL: {e}")
return errors, warnings
file_counts = 0
for dirname in progress.tqdm(files, desc="Validating directories in repo"):
file_counts += 1
if file_counts >= 30:
warnings.append("Folder contains many files/directories; stopped at 30.")
break
circuit_dir = dirname["name"]
dirname_proc = circuit_dir.lower().split("/")[-1]
if not fs.isdir(circuit_dir):
continue
curr_task = None
curr_model = None
# Look for task names in filename
for task in TASKS:
if dirname_proc.startswith(task) or f"_{task}" in dirname_proc:
curr_task = task
# Look for model names in filename
for model in MODELS:
if dirname_proc.startswith(model) or f"_{model}" in dirname_proc:
curr_model = model
if curr_task is not None and curr_model is not None:
curr_tm = f"{curr_task}_{curr_model}"
if curr_tm in VALID_COMBINATIONS:
directories_present[curr_tm] = True
else:
continue
else:
continue
# Parse circuits directory
print(f"validating {circuit_dir}")
vd_errors, vd_warnings = validate_directory_circuit(fs, repo_id, circuit_dir, curr_tm, level)
errors.extend(vd_errors)
warnings.extend(vd_warnings)
if len(vd_errors) == 0:
directories_valid[curr_tm] = True
task_set, model_set = set(), set()
for tm in directories_present:
if not directories_present[tm]:
continue
if not directories_valid[tm]:
warnings.append(f"Directory found for {tm.replace('_', '/')}, but circuits not valid or present")
continue
task, model = tm.split("_")
task_set.add(task)
model_set.add(model)
if len(task_set) < 2:
errors.append("At least 2 tasks are required")
if len(model_set) < 2:
errors.append("At least 2 models are required")
no_tm_display = [tm.replace("_", "/") for tm in directories_valid if not directories_valid[tm]]
if len(no_tm_display) > 0:
warnings.append(f"No valid circuits or importance scores found for the following tasks/models: {*no_tm_display,}")
return errors, warnings
def validate_directory_causalgraph(fs: HfFileSystem, repo_id: str, dirname: str):
errors = []
warnings = []
files = fs.ls(dirname)
files = [f["name"] for f in files if "_featurizer" in f["name"] or "_indices" in f["name"]]
valid_triplet = False
offset = 0
for idx, file in enumerate(files):
file_suffix = file.split(repo_id + "/")[1]
file_url = hf_hub_url(repo_id=repo_id, filename=file_suffix)
file_info = get_hf_file_metadata(file_url)
file_size_mb = file_info.size / (1024 * 1024)
if file_size_mb > 150:
warnings.append(f"Will skip file >150MB: {file}")
offset -= 1
continue
if idx + offset > 30:
warnings.append("Many files in directory; stopping at 30")
break
if file.endswith("_featurizer") or file.endswith("_indices"):
prefix = "_".join(file.split("_")[:-1])
this_suffix = "_" + file.split("_")[-1]
suffixes = ("_featurizer", "_inverse_featurizer", "_indices")
for idx, suffix in enumerate(suffixes):
if file.replace(this_suffix, suffix) not in files:
warnings.append(f"For {prefix}, found a {this_suffix} file but no associated {suffix}")
break
if idx == len(suffixes) - 1:
valid_triplet = True
if valid_triplet:
found_submodule = False
found_layer = False
found_token = False
if "residual" or "attention" in prefix.lower():
found_submodule = True
if "layer" in prefix.lower():
found_layer = True
if "token" in prefix.lower():
found_token = True
if not found_submodule or not found_layer or not found_token:
errors.append("Could not derive where featurizer should be applied from featurizer filenames.")
if valid_triplet:
break
if not valid_triplet:
errors.append("No valid featurizer/inverse featurizer/indices triplets.")
return errors, warnings
def verify_causal_variable_submission(hf_repo, progress=gr.Progress()):
CV_TASKS = set(["ioi_task", "4_answer_MCQA", "ARC_easy", "arithmetic", "ravel_task"])
CV_TASK_VARIABLES = {"ioi_task": ["output_token", "output_position"],
"4_answer_MCQA": ["answer_pointer", "answer"],
"ARC_easy": ["answer_pointer", "answer"],
"arithmetic": ["ones_carry"],
"ravel_task": ["Country", "Continent", "Language"]}
CV_MODELS = set(["GPT2LMHeadModel", "Qwen2ForCausalLM", "Gemma2ForCausalLM", "LlamaForCausalLM"])
# create pairs of valid task/model combinations
CV_VALID_TASK_MODELS = set([("ioi_task", "GPT2LMHeadModel"),
("ioi_task", "Qwen2ForCausalLM"),
("ioi_task", "Gemma2ForCausalLM"),
("ioi_task", "LlamaForCausalLM"),
("4_answer_MCQA", "Qwen2ForCausalLM"),
("4_answer_MCQA", "Gemma2ForCausalLM"),
("4_answer_MCQA", "LlamaForCausalLM"),
("ARC_easy", "Gemma2ForCausalLM"),
("ARC_easy", "LlamaForCausalLM"),
("arithmetic", "Gemma2ForCausalLM"),
("arithmetic", "LlamaForCausalLM"),
("ravel_task", "Gemma2ForCausalLM"),
("ravel_task", "LlamaForCausalLM")])
errors = []
warnings = []
num_py_files = 0
directories_present = {tm: False for tm in CV_VALID_TASK_MODELS}
directories_valid = {tm: False for tm in CV_VALID_TASK_MODELS}
variables_valid = {}
fs = HfFileSystem()
path = hf_repo
try:
repo_id, folder_path, revision = parse_huggingface_url(hf_repo)
folder_path = repo_id + "/" + folder_path
files = fs.listdir(folder_path, revision=revision)
except Exception as e:
errors.append(f"Could not open Huggingface URL: {e}")
return errors, warnings
file_counts = 0
for file in progress.tqdm(files, desc="Validating files in repo"):
filename = file["name"]
file_counts += 1
if file_counts >= 30:
warnings.append("Folder contains many files/directories; stopped at 30.")
break
if filename.endswith(".py"):
num_py_files += 1
causalgraph_dir = filename
dirname_proc = causalgraph_dir.lower().split("/")[-1]
if not fs.isdir(causalgraph_dir):
continue
curr_task = None
curr_model = None
curr_variable = None
# Look for task names in filename
for task in CV_TASKS:
if dirname_proc.startswith(task.lower()) or f"_{task.lower()}" in dirname_proc:
curr_task = task
if curr_task not in variables_valid:
variables_valid[curr_task] = {v: False for v in CV_TASK_VARIABLES[curr_task]}
for variable in CV_TASK_VARIABLES[curr_task]:
if dirname_proc.startswith(variable.lower()) or f"_{variable.lower()}" in dirname_proc or f"_{variable.lower().replace('_', '-')}" in dirname_proc:
curr_variable = variable
break
# Look for model names in filename
for model in CV_MODELS:
if dirname_proc.startswith(model.lower()) or f"_{model.lower()}" in dirname_proc:
curr_model = model
if curr_task is not None and curr_model is not None and curr_variable is not None:
curr_tm = (curr_task, curr_model)
if curr_tm in CV_VALID_TASK_MODELS:
directories_present[curr_tm] = True
else:
continue
else:
continue
print(f"validating {causalgraph_dir}")
vd_errors, vd_warnings = validate_directory_causalgraph(fs, repo_id, causalgraph_dir)
errors.extend(vd_errors)
warnings.extend(vd_warnings)
if len(vd_errors) == 0:
directories_valid[curr_tm] = True
variables_valid[curr_task][curr_variable] = True
if num_py_files == 0:
warnings.append("No featurizer.py or token_position.py files detected in root of provided repo. We will load from the code used for baseline evaluations.")
elif num_py_files == 1:
warnings.append("Either featurizer.py or token_position.py files missing in root of provided repo. We will load from the code used for baseline evaluations.")
task_set, model_set = set(), set()
for tm in directories_present:
if not directories_present[tm]:
continue
if not directories_valid[tm]:
warnings.append(f"Directory found for {tm[0]}/{tm[1]}, but contents not valid")
continue
for tm in directories_valid:
if directories_valid[tm]:
task, model = tm
task_set.add(task)
model_set.add(model)
if len(task_set) == 0 or len(model_set) == 0:
errors.append("No valid directories found for any task/model.")
# no_tm_display = [f"{tm[0]}/{tm[1]}" for tm in directories_valid if not directories_valid[tm]]
# if len(no_tm_display) > 0:
# warnings.append(f"No valid submission found for the following tasks/models: {*no_tm_display,}")
for task in variables_valid:
found_variable_display = [v for v in variables_valid[task] if variables_valid[task][v]]
no_variable_display = [v for v in variables_valid[task] if not variables_valid[task][v]]
if no_variable_display:
warnings.append(f"For {task}, found variables {*found_variable_display,}, but not variables {*no_variable_display,}")
return errors, warnings |