leaderboard / src /populate.py
jasonshaoshun
first commit
2fc77f5
raw
history blame
6.04 kB
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, AutoEvalColumnMultimodal, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_eval_results_mib
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results(results_path, requests_path)
print(f"raw_data is {raw_data}")
all_data_json = [v.to_dict() for v in raw_data]
print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
all_data_json_filtered = []
for item in all_data_json:
item["Track"] = item["eval_name"].split("_")[-1]
item["ioi"] = 0
item["mcqa"] = 0
if "VQA" in benchmark_cols and "VQA" in item:
all_data_json_filtered.append(item)
if "VQA" not in benchmark_cols and "VQA" not in item:
all_data_json_filtered.append(item)
all_data_json = all_data_json_filtered
df = pd.DataFrame.from_records(all_data_json)
df = df.sort_values(by=[AutoEvalColumn.text_average.name], ascending=False)
# df = df.sort_values(by=[Tasks.task0.value.col_name], ascending=False)
# df = df.sort_values(by=[AutoEvalColumn.track.name], ascending=False)
print(f"df is {df}")
# df = df[cols].round(decimals=1)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
# def get_leaderboard_df_mib(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
# """Creates a dataframe from all the individual experiment results"""
# print(f"results_path is {results_path}, requests_path is {requests_path}")
# raw_data = get_raw_eval_results(results_path, requests_path)
# print(f"raw_data is {raw_data}")
# all_data_json = [v.to_dict() for v in raw_data]
# print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
# all_data_json_filtered = []
# for item in all_data_json:
# item["Track"] = item["eval_name"].split("_")[-1]
# if "VQA" in benchmark_cols and "VQA" in item:
# all_data_json_filtered.append(item)
# if "VQA" not in benchmark_cols and "VQA" not in item:
# all_data_json_filtered.append(item)
# all_data_json_filtered.append(item)
# all_data_json = all_data_json_filtered
# df = pd.DataFrame.from_records(all_data_json)
# df = df.sort_values(by=[AutoEvalColumn.text_average.name], ascending=False)
# print(f"df is {df}")
# df = df[cols].round(decimals=1)
# # filter out if any of the benchmarks have not been produced
# df = df[has_no_nan_values(df, benchmark_cols)]
# return df
def get_leaderboard_df_mib(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the MIB experiment results"""
print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results_mib(results_path, requests_path)
print(f"raw_data is {raw_data}")
# Convert each result to dict format
all_data_json = [v.to_dict() for v in raw_data]
print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
# Convert to dataframe
df = pd.DataFrame.from_records(all_data_json)
# Sort by Average score descending
if 'Average' in df.columns:
# Convert '-' to NaN for sorting purposes
df['Average'] = pd.to_numeric(df['Average'], errors='coerce')
df = df.sort_values(by=['Average'], ascending=False, na_position='last')
# Convert NaN back to '-'
df['Average'] = df['Average'].fillna('-')
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requests"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
if "still_on_hub" in data and data["still_on_hub"]:
data[EvalQueueColumn.model.name] = make_clickable_model(data["hf_repo"], data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
else:
data[EvalQueueColumn.model.name] = data["model"]
data[EvalQueueColumn.revision.name] = "N/A"
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]