leaderboard / src /populate.py
Aaron Mueller
leaderboard update
3c343e0
raw
history blame
7.8 kB
import json
import os
import pandas as pd
from typing import List, Dict, Tuple
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, AutoEvalColumnMultimodal, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_eval_results_mib_subgraph, get_raw_eval_results_mib_causalgraph
from src.about import TasksMib_Causalgraph
def get_leaderboard_df_mib_subgraph(results_path: str, cols: list, benchmark_cols: list,
metric_type = "F+") -> pd.DataFrame:
"""Creates a dataframe from all the MIB experiment results"""
# print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results_mib_subgraph(results_path)
all_data_json = [v.to_dict(metric_type=metric_type) for v in raw_data]
# print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
# Convert to dataframe
df = pd.DataFrame.from_records(all_data_json)
ascending = False if metric_type == "F+" else True
# Sort by Average score descending
if 'Average' in df.columns:
# Convert '-' to NaN for sorting purposes
df['Average'] = pd.to_numeric(df['Average'], errors='coerce')
df = df.sort_values(by=['Average'], ascending=ascending, na_position='last')
# Convert NaN back to '-'
df['Average'] = df['Average'].fillna('-')
return df
def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
"""Aggregates rows with the same base method name by taking the max value for each column"""
df_copy = df.copy()
# Set Method as index if it isn't already
if 'Method' in df_copy.columns:
df_copy.set_index('Method', inplace=True)
# Extract base method names (remove _2, _3, etc. suffixes)
base_methods = [name.split('_')[0] if '_' in str(name) and str(name).split('_')[-1].isdigit()
else name for name in df_copy.index]
df_copy.index = base_methods
# Convert scores to numeric values
numeric_df = df_copy.select_dtypes(include=['float64', 'int64'])
# Group by base method name and take the max
aggregated_df = numeric_df.groupby(level=0).max().round(2)
# Reset index to get Method as a column
aggregated_df.reset_index(inplace=True)
aggregated_df.rename(columns={'index': 'Method'}, inplace=True)
return aggregated_df
def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
"""Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
df_copy = df.copy()
# Store Method column
method_col = None
if 'Method' in df_copy.columns:
method_col = df_copy['Method']
df_copy = df_copy.drop('Method', axis=1)
if 'eval_name' in df_copy.columns:
df_copy = df_copy.drop('eval_name', axis=1)
# Group columns by model and intervention
result_cols = {}
for task in TasksMib_Causalgraph:
for model in task.value.models: # Will iterate over all three models
for intervention in task.value.interventions:
for counterfactual in task.value.counterfactuals:
col_pattern = f"{model}_layer.*_{intervention}_{counterfactual}"
matching_cols = [c for c in df_copy.columns if pd.Series(c).str.match(col_pattern).any()]
if matching_cols:
col_name = f"{model}_{intervention}_{counterfactual}"
result_cols[col_name] = matching_cols
averaged_df = pd.DataFrame()
if method_col is not None:
averaged_df['Method'] = method_col
for col_name, cols in result_cols.items():
averaged_df[col_name] = df_copy[cols].mean(axis=1).round(2)
return averaged_df
def get_leaderboard_df_mib_causalgraph(results_path: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
# print(f"results_path is {results_path}, requests_path is {requests_path}")
detailed_df, aggregated_df, intervention_averaged_df = get_raw_eval_results_mib_causalgraph(results_path)
# all_data_json = [v.to_dict() for v in raw_detailed_df]
# detailed_df = pd.DataFrame.from_records(all_data_json)
# all_data_json = [v.to_dict() for v in raw_aggregated_df]
# aggregated_df = pd.DataFrame.from_records(all_data_json)
# all_data_json = [v.to_dict() for v in raw_intervention_averaged_df]
# intervention_averaged_df = pd.DataFrame.from_records(all_data_json)
# # Rename columns to match schema
# column_mapping = {}
# for col in detailed_df.columns:
# if col in ['eval_name', 'Method']:
# continue
# # Ensure consistent casing for the column names
# new_col = col.replace('Qwen2ForCausalLM', 'qwen2forcausallm') \
# .replace('Gemma2ForCausalLM', 'gemma2forcausallm') \
# .replace('LlamaForCausalLM', 'llamaforcausallm')
# column_mapping[col] = new_col
# detailed_df = detailed_df.rename(columns=column_mapping)
# # Create aggregated df
# aggregated_df = aggregate_methods(detailed_df)
# # Create intervention-averaged df
# intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
# print("Transformed columns:", detailed_df.columns.tolist())
print(f"Columns in detailed_df: {detailed_df.columns.tolist()}")
print(f"Columns in aggregated_df: {aggregated_df.columns.tolist()}")
print(f"Columns in intervention_averaged_df: {intervention_averaged_df.columns.tolist()}")
return detailed_df, aggregated_df, intervention_averaged_df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requests"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
# if "still_on_hub" in data and data["still_on_hub"]:
# data[EvalQueueColumn.model.name] = make_clickable_model(data["hf_repo"], data["model"])
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
# else:
# data[EvalQueueColumn.model.name] = data["model"]
# data[EvalQueueColumn.revision.name] = "N/A"
all_evals.append(data)
# elif ".md" not in entry:
# # this is a folder
# sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
# for sub_entry in sub_entries:
# file_path = os.path.join(save_path, entry, sub_entry)
# with open(file_path) as fp:
# data = json.load(fp)
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
# all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN", "PREVALIDATION"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]