leaderboard / app.py
Aaron Mueller
remove type errors
c57af6c
raw
history blame
35.9 kB
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import numpy as np
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO
from typing import Dict, List, Optional
from dataclasses import dataclass, field
from copy import deepcopy
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
BENCHMARK_COLS_MULTIMODAL,
BENCHMARK_COLS_MIB_SUBGRAPH,
COLS,
COLS_MIB_SUBGRAPH,
COLS_MULTIMODAL,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumn_mib_subgraph,
AutoEvalColumn_mib_causalgraph,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph
from src.submission.submit import add_new_eval
from src.about import TasksMib_Subgraph, TasksMib_Causalgraph
# class SmartSelectColumns(SelectColumns):
# """
# Enhanced SelectColumns component with basic filtering functionality.
# """
# def __init__(
# self,
# benchmark_keywords: Optional[List[str]] = None,
# model_keywords: Optional[List[str]] = None,
# initial_selected: Optional[List[str]] = None,
# **kwargs
# ):
# """
# Initialize SmartSelectColumns with minimal configuration.
# Args:
# benchmark_keywords: List of benchmark names to filter by
# model_keywords: List of model names to filter by
# initial_selected: List of columns to show initially
# """
# super().__init__(**kwargs)
# self.benchmark_keywords = benchmark_keywords or []
# self.model_keywords = model_keywords or []
# self.initial_selected = initial_selected or []
# def get_filtered_groups(self, df: pd.DataFrame) -> Dict[str, List[str]]:
# """
# Create column groups based on simple substring matching.
# """
# filtered_groups = {}
# # Create benchmark groups
# for benchmark in self.benchmark_keywords:
# matching_cols = [
# col for col in df.columns
# if benchmark in col.lower()
# ]
# if matching_cols:
# group_name = f"Benchmark group for {benchmark}"
# filtered_groups[group_name] = matching_cols
# # Create model groups
# for model in self.model_keywords:
# matching_cols = [
# col for col in df.columns
# if model in col.lower()
# ]
# if matching_cols:
# group_name = f"Model group for {model}"
# filtered_groups[group_name] = matching_cols
# return filtered_groups
# def update(
# self,
# value: Union[pd.DataFrame, Dict[str, List[str]], Any]
# ) -> Dict:
# """Update component with new values."""
# if isinstance(value, pd.DataFrame):
# choices = list(value.columns)
# selected = self.initial_selected if self.initial_selected else choices
# filtered_cols = self.get_filtered_groups(value)
# return {
# "choices": choices,
# "value": selected,
# "filtered_cols": filtered_cols
# }
# if hasattr(value, '__dataclass_fields__'):
# field_names = [field.name for field in fields(value)]
# return {
# "choices": field_names,
# "value": self.initial_selected if self.initial_selected else field_names
# }
# return super().update(value)
from gradio_leaderboard import SelectColumns, Leaderboard
import pandas as pd
from typing import List, Dict, Optional
from dataclasses import fields
import math
class SmartSelectColumns(SelectColumns):
"""
Enhanced SelectColumns component matching exact original parameters.
"""
def __init__(
self,
benchmark_keywords: Optional[List[str]] = None,
model_keywords: Optional[List[str]] = None,
initial_selected: Optional[List[str]] = None,
label: Optional[str] = None,
show_label: bool = True,
info: Optional[str] = None,
allow: bool = True
):
# Match exact parameters from working SelectColumns
super().__init__(
default_selection=initial_selected or [],
cant_deselect=[],
allow=allow,
label=label,
show_label=show_label,
info=info
)
self.benchmark_keywords = benchmark_keywords or []
self.model_keywords = model_keywords or []
# Store groups for later use
self._groups = {}
def get_filtered_groups(self, columns: List[str]) -> Dict[str, List[str]]:
"""Get column groups based on keywords."""
filtered_groups = {}
# Add benchmark groups
for benchmark in self.benchmark_keywords:
matching_cols = [
col for col in columns
if benchmark in col.lower()
]
if matching_cols:
filtered_groups[f"Benchmark group for {benchmark}"] = matching_cols
# Add model groups
for model in self.model_keywords:
matching_cols = [
col for col in columns
if model in col.lower()
]
if matching_cols:
filtered_groups[f"Model group for {model}"] = matching_cols
self._groups = filtered_groups
return filtered_groups
import re
@dataclass
class SubstringSelectColumns(SelectColumns):
"""
Extends SelectColumns to support filtering columns by predefined substrings.
When a substring is selected, all columns containing that substring will be selected.
"""
substring_groups: Dict[str, List[str]] = field(default_factory=dict)
selected_substrings: List[str] = field(default_factory=list)
def __post_init__(self):
# Ensure default_selection is a list
if self.default_selection is None:
self.default_selection = []
# Build reverse mapping of column to substrings
self.column_to_substrings = {}
for substring, patterns in self.substring_groups.items():
for pattern in patterns:
# Convert glob-style patterns to regex
regex = re.compile(pattern.replace('*', '.*'))
# Find matching columns in default_selection
for col in self.default_selection:
if regex.search(col):
if col not in self.column_to_substrings:
self.column_to_substrings[col] = []
self.column_to_substrings[col].append(substring)
# Apply initial substring selections
if self.selected_substrings:
self.update_selection_from_substrings()
def update_selection_from_substrings(self) -> List[str]:
"""
Updates the column selection based on selected substrings.
Returns the new list of selected columns.
"""
selected_columns = self.cant_deselect.copy()
# If no substrings selected, show all columns
if not self.selected_substrings:
selected_columns.extend([
col for col in self.default_selection
if col not in self.cant_deselect
])
return selected_columns
# Add columns that match any selected substring
for col, substrings in self.column_to_substrings.items():
if any(s in self.selected_substrings for s in substrings):
if col not in selected_columns:
selected_columns.append(col)
return selected_columns
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
# print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
# print(RESULTS_REPO_MIB_SUBGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
# print(RESULTS_REPO_MIB_CAUSALGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
def _sigmoid(x):
try:
return 1 / (1 + math.exp(-2 * (x-1)))
except:
return "-"
LEADERBOARD_DF_MIB_SUBGRAPH_FPL = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH)
LEADERBOARD_DF_MIB_SUBGRAPH_FEQ = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH,
metric_type="F=")
# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH)
# In app.py, modify the LEADERBOARD initialization
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph(
EVAL_RESULTS_MIB_CAUSALGRAPH_PATH,
EVAL_REQUESTS_PATH
)
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard_mib_subgraph(dataframe, track):
"""Initialize the subgraph leaderboard with display names for better readability."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# First, create our display name mapping
# This is like creating a translation dictionary between internal names and display names
model_name_mapping = {
"qwen2_5": "Qwen-2.5",
"gpt2": "GPT-2",
"gemma2": "Gemma-2",
"llama3": "Llama-3.1"
}
benchmark_mapping = {
"ioi": "IOI",
"mcqa": "MCQA",
"arithmetic_addition": "Arithmetic (+)",
"arithmetic_subtraction": "Arithmetic (-)",
"arc_easy": "ARC (Easy)",
"arc_challenge": "ARC (Challenge)"
}
display_mapping = {}
for task in TasksMib_Subgraph:
for model in task.value.models:
field_name = f"{task.value.benchmark}_{model}"
display_name = f"{benchmark_mapping[task.value.benchmark]} - {model_name_mapping[model]}"
display_mapping[field_name] = display_name
# Now when creating benchmark groups, we'll use display names
benchmark_groups = []
for task in TasksMib_Subgraph:
benchmark = task.value.benchmark
benchmark_cols = [
display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping
for model in task.value.models
if f"{benchmark}_{model}" in dataframe.columns
]
if benchmark_cols:
benchmark_groups.append(benchmark_cols)
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
# Similarly for model groups
model_groups = []
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
for model in all_models:
model_cols = [
display_mapping[f"{task.value.benchmark}_{model}"] # Use display name
for task in TasksMib_Subgraph
if model in task.value.models
and f"{task.value.benchmark}_{model}" in dataframe.columns
]
if model_cols:
model_groups.append(model_cols)
print(f"\nModel group for {model}:", model_cols)
# Combine all groups using display names
all_groups = benchmark_groups + model_groups
all_columns = [col for group in all_groups for col in group]
# Important: We need to rename our DataFrame columns to match display names
renamed_df = dataframe.rename(columns=display_mapping)
# all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default]
# all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph)]
all_columns = renamed_df.columns.tolist()
# Original code
return Leaderboard(
value=renamed_df, # Use DataFrame with display names
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=all_columns, # Now contains display names
# label="Filter Results:",
# ),
search_columns=["Method"],
hide_columns=["eval_name"],
interactive=False,
), renamed_df
def init_leaderboard_mib_causalgraph(dataframe, track):
# print("Debugging column issues:")
# print("\nActual DataFrame columns:")
# print(dataframe.columns.tolist())
model_name_mapping = {
"Qwen2ForCausalLM": "Qwen-2.5",
"GPT2ForCausalLM": "GPT-2",
"Gemma2ForCausalLM": "Gemma-2",
"LlamaForCausalLM": "Llama-3.1"
}
benchmark_mapping = {
"IOI": "IOI",
"MCQA": "MCQA",
"arithmetic_addition": "Arithmetic (+)",
"arithmetic_subtraction": "Arithmetic (-)",
"arc_easy": "ARC (Easy)",
"arc_challenge": "ARC (Challenge)"
}
display_mapping = {}
for task in TasksMib_Causalgraph:
for model in task.value.models:
field_name = f"{task.value.col_name}_{model}"
display_name = f"{benchmark_mapping[task.value.col_name]} - {model_name_mapping[model]}"
display_mapping[field_name] = display_name
# print(dataframe)
renamed_df = dataframe.rename(columns=display_mapping)
# idx_to_method = {0: "Full Vector", 1: "DAS", 2: "DBM", 3: "PCA", 4: "SAE"}
# idx_to_scores = {0: [0.38, 0.36, 0.38, 0.42],
# 1: [0.56, 0.62, 0.54, 0.51],
# 2: [0.43, 0.41, 0.53, 0.49],
# 3: [0.26, 0.20, 0.32, 0.40],
# 4: ["-", "-", 0.33, "-"]}
# renamed_df.loc[0]["Method"] = "Full Vector"
# for i in range(5):
# renamed_df.loc[i] = [idx_to_method[i]] + idx_to_scores[i]
print(renamed_df)
# Create only necessary columns
return Leaderboard(
value=renamed_df,
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
# select_columns=SelectColumns(
# default_selection=["Method"], # Start with just Method column
# cant_deselect=["Method"], # Method column should always be visible
# label="Select Columns to Display:",
# ),
search_columns=["Method"],
hide_columns=["eval_name"],
bool_checkboxgroup_label="Hide models",
interactive=False,
), renamed_df
def init_leaderboard(dataframe, track):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
dataframe = dataframe.loc[dataframe["Track"] == track]
# print(f"\n\n\n dataframe is {dataframe}\n\n\n")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def process_json(temp_file):
if temp_file is None:
return {}
# Handle file upload
try:
file_path = temp_file.name
if file_path.endswith('.gz'):
with gzip.open(file_path, 'rt') as f:
data = json.load(f)
else:
with open(file_path, 'r') as f:
data = json.load(f)
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
gr.Markdown("Upload successful!")
return data
def get_hf_username(hf_repo):
hf_repo = hf_repo.rstrip("/")
parts = hf_repo.split("/")
username = parts[-2]
return username
# Define the preset substrings for filtering
PRESET_SUBSTRINGS = ["IOI", "MCQA", "Arithmetic", "ARC", "GPT-2", "Qwen-2.5", "Gemma-2", "Llama-3.1"]
TASK_SUBSTRINGS = ["IOI", "MCQA", "Arithmetic", "ARC"]
MODEL_SUBSTRINGS = ["GPT-2", "Qwen-2.5", "Gemma-2", "Llama-3.1"]
def filter_columns_by_substrings(dataframe: pd.DataFrame, selected_task_substrings: List[str],
selected_model_substrings: List[str]) -> pd.DataFrame:
"""
Filter columns based on the selected substrings.
"""
original_dataframe = deepcopy(dataframe)
if not selected_task_substrings and not selected_model_substrings:
return dataframe # No filtering if no substrings are selected
if not selected_task_substrings:
# Filter columns that contain any of the selected model substrings
filtered_columns = [
col for col in dataframe.columns
if any(sub.lower() in col.lower() for sub in selected_model_substrings)
or col == "Method"
]
return dataframe[filtered_columns]
elif not selected_model_substrings:
# Filter columns that contain any of the selected task substrings
filtered_columns = [
col for col in dataframe.columns
if any(sub.lower() in col.lower() for sub in selected_task_substrings)
or col == "Method"
]
return dataframe[filtered_columns]
# Filter columns by task first. Use AND logic to combine with model filtering
filtered_columns = [
col for col in dataframe.columns
if any(sub.lower() in col.lower() for sub in selected_task_substrings)
or col == "Method"
]
filtered_columns = [
col for col in dataframe[filtered_columns].columns
if any(sub.lower() in col.lower() for sub in selected_model_substrings)
or col == "Method"
]
return dataframe[filtered_columns]
def update_leaderboard(dataframe: pd.DataFrame, selected_task_substrings: List[str],
selected_model_substrings: List[str]):
"""
Update the leaderboard based on the selected substrings.
"""
filtered_dataframe = filter_columns_by_substrings(dataframe, selected_task_substrings, selected_model_substrings)
if len(selected_task_substrings) >= 2 or len(selected_task_substrings) == 0:
if len(selected_model_substrings) >= 2 or len(selected_model_substrings) == 0:
show_average = True
else:
show_average = False
else:
show_average = False
def _transform_floats(df):
df_transformed = df.copy()
# Apply transformation row by row
for i, row in df_transformed.iterrows():
# Apply sigmoid only to numeric values in the row
df_transformed.loc[i] = row.apply(lambda x: _sigmoid(x) if isinstance(x, (float, int)) else x)
return df_transformed
if show_average:
numeric_df = filtered_dataframe.select_dtypes(include=[np.number])
means = numeric_df.mean(axis=1, skipna=False)
# means = filtered_dataframe.replace("-", float("nan")).mean(axis=1, skipna=False)
s_filtered_dataframe = _transform_floats(filtered_dataframe)
numeric_s_df = s_filtered_dataframe.select_dtypes(include=[np.number])
# s_means = s_filtered_dataframe.replace("-", float("nan")).mean(axis=1, skipna=False)
s_means = numeric_s_df.mean(axis=1, skipna=False)
filtered_dataframe.loc[:, "Average"] = np.where(filtered_dataframe.eq("-").any(axis=1), "-", means.round(2))
filtered_dataframe.loc[:, "Score"] = np.where(filtered_dataframe.eq("-").any(axis=1), "-", s_means.round(2))
filtered_dataframe = filtered_dataframe.sort_values(by=["Average"], ascending=False, na_position='last')
# if show_average:
# print([row for index, row in filtered_dataframe.iterrows()])
# filtered_dataframe["Average"] = [round(np.mean(row.values()), 2) if "-" not in row.values() else "-" for index, row in filtered_dataframe.iterrows()]
# # Sort by Average score descending
# if 'Average' in dataframe.columns:
# # Convert '-' to NaN for sorting purposes
# df['Average'] = pd.to_numeric(['Average'], errors='coerce')
# df = df.sort_values(by=['Average'], ascending=True, na_position='last')
# # Convert NaN back to '-'
# df['Average'] = df['Average'].fillna('-')
return filtered_dataframe
def process_url(url):
# Add your URL processing logic here
return f"You entered the URL: {url}"
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")
# with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
# leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
with gr.TabItem("Circuit Localization", elem_id="subgraph", id=0):
with gr.Tabs() as subgraph_tabs:
with gr.TabItem("F+", id=0):
# Add description for filters
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
# CheckboxGroup for selecting substrings
# substring_checkbox = gr.CheckboxGroup(
# choices=PRESET_SUBSTRINGS,
# label="Filter results:",
# value=PRESET_SUBSTRINGS, # Default to all substrings selected
# )
task_substring_checkbox = gr.CheckboxGroup(
choices=TASK_SUBSTRINGS,
label="View tasks:",
value=TASK_SUBSTRINGS, # Default to all substrings selected
)
model_substring_checkbox = gr.CheckboxGroup(
choices = MODEL_SUBSTRINGS,
label = "View models:",
value = MODEL_SUBSTRINGS
)
leaderboard, data = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH_FPL, "Subgraph")
original_leaderboard = gr.State(value=data)
# Update the leaderboard when the user selects/deselects substrings
task_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox],
outputs=leaderboard
)
model_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox],
outputs=leaderboard
)
print(f"Leaderboard is {leaderboard}")
with gr.TabItem("F=", id=1):
# Add description for filters
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
# CheckboxGroup for selecting substrings
# substring_checkbox = gr.CheckboxGroup(
# choices=PRESET_SUBSTRINGS,
# label="Filter results:",
# value=PRESET_SUBSTRINGS, # Default to all substrings selected
# )
task_substring_checkbox = gr.CheckboxGroup(
choices=TASK_SUBSTRINGS,
label="View tasks:",
value=TASK_SUBSTRINGS, # Default to all substrings selected
)
model_substring_checkbox = gr.CheckboxGroup(
choices = MODEL_SUBSTRINGS,
label = "View models:",
value = MODEL_SUBSTRINGS
)
leaderboard, data = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH_FEQ, "Subgraph")
original_leaderboard = gr.State(value=data)
# Update the leaderboard when the user selects/deselects substrings
task_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox],
outputs=leaderboard
)
model_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox],
outputs=leaderboard
)
print(f"Leaderboard is {leaderboard}")
# Then modify the Causal Graph tab section
with gr.TabItem("Causal Variable Localization", elem_id="causalgraph", id=1):
with gr.Tabs() as causalgraph_tabs:
with gr.TabItem("Detailed View", id=0):
leaderboard_detailed, data = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED,
"Causal Graph"
)
with gr.TabItem("Aggregated View", id=1):
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
# substring_checkbox = gr.CheckboxGroup(
# choices=PRESET_SUBSTRINGS,
# label="Filter results:",
# value=PRESET_SUBSTRINGS, # Default to all substrings selected
# )
task_substring_checkbox = gr.CheckboxGroup(
choices=TASK_SUBSTRINGS,
label="View tasks:",
value=TASK_SUBSTRINGS, # Default to all substrings selected
)
model_substring_checkbox = gr.CheckboxGroup(
choices = MODEL_SUBSTRINGS,
label = "View models:",
value = MODEL_SUBSTRINGS
)
leaderboard_aggregated, data = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED,
"Causal Graph"
)
original_leaderboard = gr.State(value=data)
task_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox],
outputs=leaderboard_aggregated
)
model_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox],
outputs=leaderboard_aggregated
)
with gr.TabItem("Intervention Averaged", id=2):
leaderboard_averaged, data = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED,
"Causal Graph"
)
with gr.TabItem("Submit", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown("## πŸ† Submission Portal")
# Track selection
track = gr.Radio(
choices=[
"Circuit Localization Track",
"Causal Variable Localization Track"
],
label="Select Competition Track",
elem_id="track_selector"
)
with gr.Group(visible=False) as circuit_ui:
gr.Markdown("### Circuit Localization Requirements")
hf_repo = gr.Textbox(
label="HuggingFace Repository URL",
placeholder="https://huggingface.co/username/repo/tree/main/path",
info="Must be a valid HuggingFace URL pointing to a folder with 10 circuit files (.json or .pt)"
)
with gr.Group(visible=False) as causal_ui:
gr.Markdown("### Causal Variable Localization Requirements")
with gr.Row():
layer = gr.Number(
label="Layer Number",
precision=0,
minimum=0,
info="Integer specifying the model layer"
)
token_position = gr.Number(
label="Token Position",
precision=0,
minimum=0,
info="Integer specifying token position"
)
code_upload = gr.File(
label="Upload Python file implementing your featurization function",
file_types=[".py"],
)
# Common fields
with gr.Group():
gr.Markdown("### Team Information")
team_name = gr.Textbox(label="Team Name")
contact_email = gr.Textbox(label="Contact Email")
# Dynamic UI logic
def toggle_ui(track):
circuit = track == "Circuit Localization Track"
causal = not circuit
return {
circuit_ui: gr.Group(visible=circuit),
causal_ui: gr.Group(visible=causal)
}
track.change(toggle_ui, track, [circuit_ui, causal_ui])
# Submission handling
status = gr.Textbox(label="Submission Status", visible=False)
def handle_submission(track, hf_repo, layer, token_position, code_upload, team_name, contact_email):
errors = []
# Validate common fields
if not team_name.strip():
errors.append("Team name is required")
if "@" not in contact_email or "." not in contact_email:
errors.append("Valid email address is required")
# Track-specific validation
if "Circuit" in track:
if not hf_repo.startswith("https://huggingface.co/"):
errors.append("Invalid HuggingFace URL - must start with https://huggingface.co/")
else:
# Check rate limit only for valid HF submissions
username = get_hf_username(hf_repo)
rate = 0 # TODO: check submissions queue for rates
rate_limit = 2
if rate > rate_limit:
errors.append("Rate limit exceeded (max 2 submissions per week per HF account)")
else:
if not (isinstance(layer, int) and isinstance(token_position, int)):
errors.append("Layer and token position must be integers")
if not code_upload:
errors.append("Code file upload is required")
if errors:
return gr.Textbox("\n".join(f"❌ {e}" for e in errors), visible=True)
# Process valid submission
return gr.Textbox("βœ… Submission received! Thank you for your entry.", visible=True)
submit_btn = gr.Button("Submit Entry", variant="primary")
submit_btn.click(
handle_submission,
inputs=[track, hf_repo, layer, token_position, code_upload, team_name, contact_email],
outputs=status
)
# Add info about rate limits
gr.Markdown("""
### Submission Policy
- Maximum 2 valid submissions per HuggingFace account per week
- Invalid submissions don't count toward your limit
- Rate limit tracked on a rolling basis: a submission no longer counts toward the limit as soon as 7 days have passed since the submission time
""")
# with gr.Row():
# with gr.Accordion("πŸ“™ Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)