Spaces:
Running
Running
import json | |
import gzip | |
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from io import StringIO | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
BENCHMARK_COLS_MULTIMODAL, | |
BENCHMARK_COLS_MIB_SUBGRAPH, | |
BENCHMARK_COLS_MIB_CAUSALGRAPH, | |
COLS, | |
COLS_MIB_SUBGRAPH, | |
COLS_MIB_CAUSALGRAPH, | |
COLS_MULTIMODAL, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
AutoEvalColumn_mib_subgraph, | |
AutoEvalColumn_mib_causalgraph, | |
fields, | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
# print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
# print(RESULTS_REPO_MIB_SUBGRAPH) | |
snapshot_download( | |
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
# print(RESULTS_REPO_MIB_CAUSALGRAPH) | |
snapshot_download( | |
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH) | |
# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH) | |
# In app.py, modify the LEADERBOARD initialization | |
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph( | |
EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, | |
EVAL_REQUESTS_PATH, | |
COLS_MIB_CAUSALGRAPH, | |
BENCHMARK_COLS_MIB_CAUSALGRAPH | |
) | |
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# # print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n") | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# # filter for correct track | |
# # dataframe = dataframe.loc[dataframe["Track"] == track] | |
# # print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n") | |
# return Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=SelectColumns( | |
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default], | |
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden], | |
# label="Select Columns to Display:", | |
# ), | |
# search_columns=["Method"], # Changed from AutoEvalColumn_mib_subgraph.model.name to "Method" | |
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden], | |
# bool_checkboxgroup_label="Hide models", | |
# interactive=False, | |
# ) | |
from src.about import TasksMib_Subgraph | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# # Get unique tasks and models for filters | |
# tasks = list(set(task.value.benchmark for task in TasksMib_Subgraph)) | |
# models = list(set( | |
# model | |
# for task in TasksMib_Subgraph | |
# for model in task.value.models | |
# )) | |
# return Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=SelectColumns( | |
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default], | |
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden], | |
# label="Select Columns to Display:", | |
# ), | |
# column_filters=[ | |
# ColumnFilter( | |
# column="task_filter", | |
# choices=tasks, | |
# label="Filter by Task:", | |
# default=None | |
# ), | |
# ColumnFilter( | |
# column="model_filter", | |
# choices=models, | |
# label="Filter by Model:", | |
# default=None | |
# ) | |
# ], | |
# search_columns=["Method"], | |
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden], | |
# bool_checkboxgroup_label="Hide models", | |
# interactive=False, | |
# ) | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# # Add filter columns to display | |
# dataframe['Task'] = dataframe.apply( | |
# lambda row: [task.value.benchmark for task in TasksMib_Subgraph | |
# if any(f"{task.value.benchmark}_{model}" in row.index | |
# for model in task.value.models)][0], | |
# axis=1 | |
# ) | |
# dataframe['Model'] = dataframe.apply( | |
# lambda row: [model for task in TasksMib_Subgraph | |
# for model in task.value.models | |
# if f"{task.value.benchmark}_{model}" in row.index][0], | |
# axis=1 | |
# ) | |
# return Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=SelectColumns( | |
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default], | |
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden], | |
# label="Select Columns to Display:", | |
# ), | |
# search_columns=["Method", "Task", "Model"], # Add Task and Model to searchable columns | |
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden], | |
# bool_checkboxgroup_label="Hide models", | |
# interactive=False, | |
# ) | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# """Initialize the subgraph leaderboard with grouped column selection.""" | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# # Get tasks and models using the new class methods | |
# tasks = TasksMib_Subgraph.get_all_tasks() | |
# models = TasksMib_Subgraph.get_all_models() | |
# # Create a mapping from selection to actual column names | |
# selection_map = {} | |
# # Add task mappings - when a task is selected, show all its columns | |
# for task in tasks: | |
# # For each task, find all valid task_model combinations | |
# valid_combos = [] | |
# for model in models: | |
# col_name = f"{task}_{model}" | |
# if col_name in dataframe.columns: | |
# valid_combos.append(col_name) | |
# if valid_combos: | |
# selection_map[task] = valid_combos | |
# # Add model mappings - when a model is selected, show all its columns | |
# for model in models: | |
# # For each model, find all valid task_model combinations | |
# valid_combos = [] | |
# for task in tasks: | |
# col_name = f"{task}_{model}" | |
# if col_name in dataframe.columns: | |
# valid_combos.append(col_name) | |
# if valid_combos: | |
# selection_map[model] = valid_combos | |
# return Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=SelectColumns( | |
# choices=[tasks, models], # Two groups of choices | |
# labels=["Tasks", "Models"], # Labels for each group | |
# default_selection=[*tasks, *models], # Show everything by default | |
# cant_deselect=["Method"], # Method column always visible | |
# label="Filter by Tasks or Models:", | |
# selection_map=selection_map # Map selections to actual columns | |
# ), | |
# search_columns=["Method"], | |
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden], | |
# bool_checkboxgroup_label="Hide models", | |
# interactive=False, | |
# ) | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# """Initialize the subgraph leaderboard with grouped column selection for gradio-leaderboard 0.0.13""" | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# # Get all unique tasks and models | |
# tasks = [task.value.benchmark for task in TasksMib_Subgraph] | |
# models = list(set(model for task in TasksMib_Subgraph for model in task.value.models)) | |
# # Create two selection groups: one for tasks and one for models | |
# # In 0.0.13, we can only have one SelectColumns, so we'll combine them | |
# selection_choices = [ | |
# *[f"Task: {task}" for task in tasks], # Prefix with 'Task:' for clarity | |
# *[f"Model: {model}" for model in models] # Prefix with 'Model:' for clarity | |
# ] | |
# return Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=SelectColumns( | |
# default_selection=selection_choices, # Show all by default | |
# choices=selection_choices, | |
# cant_deselect=["Method"], # Method column always visible | |
# label="Select Tasks or Models:", | |
# ), | |
# search_columns=["Method"], | |
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden], | |
# bool_checkboxgroup_label="Hide models", | |
# interactive=False, | |
# ) | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# """Initialize the subgraph leaderboard focusing only on task and model filtering. | |
# This implementation creates a focused view where users can select which task-model | |
# combinations they want to see, making the analysis of results more straightforward. | |
# """ | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# # Get all task-model combinations that actually exist in our data | |
# task_model_columns = [] | |
# for task in TasksMib_Subgraph: | |
# for model in task.value.models: | |
# col_name = f"{task.value.benchmark}_{model}" | |
# if col_name in dataframe.columns: | |
# task_model_columns.append(col_name) | |
# return Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=SelectColumns( | |
# default_selection=task_model_columns, | |
# label="Select Task-Model Combinations:", | |
# ), | |
# search_columns=["Method"], # Keep Method searchable but not in column selection | |
# hide_columns=[], # We don't need to hide any columns | |
# bool_checkboxgroup_label="Hide models", | |
# interactive=False, | |
# ) | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# """Initialize the subgraph leaderboard with verified task/model column selection""" | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# # First, let's identify which columns actually exist in our dataframe | |
# print("Available columns in dataframe:", dataframe.columns.tolist()) | |
# # Create task selections based on TasksMib_Subgraph definition | |
# task_selections = [] | |
# for task in TasksMib_Subgraph: | |
# task_cols = [] | |
# for model in task.value.models: | |
# col_name = f"{task.value.benchmark}_{model}" | |
# if col_name in dataframe.columns: | |
# task_cols.append(col_name) | |
# if task_cols: # Only add tasks that have data | |
# print(f"Task {task.value.benchmark} has columns:", task_cols) | |
# task_selections.append(f"Task: {task.value.benchmark}") | |
# # Create model selections by checking which models appear in columns | |
# model_selections = [] | |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models)) | |
# for model in all_models: | |
# model_cols = [] | |
# for task in TasksMib_Subgraph: | |
# if model in task.value.models: | |
# col_name = f"{task.value.benchmark}_{model}" | |
# if col_name in dataframe.columns: | |
# model_cols.append(col_name) | |
# if model_cols: # Only add models that have data | |
# print(f"Model {model} has columns:", model_cols) | |
# model_selections.append(f"Model: {model}") | |
# # Combine all selections | |
# selections = task_selections + model_selections | |
# print("Final selection options:", selections) | |
# # Print DataFrame information | |
# print("\nDebugging DataFrame:") | |
# print("DataFrame columns:", dataframe.columns.tolist()) | |
# print("DataFrame shape:", dataframe.shape) | |
# print("DataFrame head:\n", dataframe.head()) | |
# return Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=SelectColumns( | |
# default_selection=selections, | |
# label="Select Tasks or Models:" | |
# ), | |
# search_columns=["Method"], | |
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden], | |
# bool_checkboxgroup_label="Hide models", | |
# interactive=False, | |
# ) | |
def init_leaderboard_mib_subgraph(dataframe, track): | |
"""Initialize the subgraph leaderboard with benchmark and model filtering capabilities.""" | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
# Print DataFrame information for debugging | |
print("\nDebugging DataFrame columns:", dataframe.columns.tolist()) | |
# Get result columns (excluding Method and Average) | |
result_columns = [col for col in dataframe.columns | |
if col not in ['Method', 'Average'] and '_' in col] | |
# Create benchmark and model selections | |
benchmarks = set() | |
models = set() | |
# Extract unique benchmarks and models from column names | |
for col in result_columns: | |
print(f"col is {col}") | |
benchmark, model = col.split('-') | |
benchmarks.add(benchmark) | |
models.add(model) | |
print(f"benchmark is {benchmark} and model is {model}") | |
# Create selection groups | |
benchmark_selections = { | |
# For each benchmark, store which columns should be shown | |
benchmark: [col for col in result_columns if col.startswith(f"{benchmark}(")] | |
for benchmark in benchmarks | |
} | |
model_selections = { | |
# For each model, store which columns should be shown | |
model: [col for col in result_columns if col.endswith(f"({model})")] | |
for model in models | |
} | |
# Combine the selection mappings | |
selection_groups = { | |
**benchmark_selections, | |
**model_selections | |
} | |
print("\nDebugging Selection Groups:") | |
print("Benchmarks:", benchmark_selections.keys()) | |
print("Models:", model_selections.keys()) | |
# Convert keys to list for selection options | |
selection_options = list(selection_groups.keys()) | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
select_columns=SelectColumns( | |
default_selection=selection_options, # Show all options by default | |
label="Filter by Benchmark or Model:" | |
), | |
search_columns=["Method"], | |
hide_columns=[], | |
interactive=False, | |
) | |
def init_leaderboard_mib_causalgraph(dataframe, track): | |
# print("Debugging column issues:") | |
# print("\nActual DataFrame columns:") | |
# print(dataframe.columns.tolist()) | |
# print("\nExpected columns for Leaderboard:") | |
expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)] | |
# print(expected_cols) | |
# print("\nMissing columns:") | |
missing_cols = [col for col in expected_cols if col not in dataframe.columns] | |
# print(missing_cols) | |
# print("\nSample of DataFrame content:") | |
# print(dataframe.head().to_string()) | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=["Method"], | |
hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def init_leaderboard_mib_causalgraph(dataframe, track): | |
# print("Debugging column issues:") | |
# print("\nActual DataFrame columns:") | |
# print(dataframe.columns.tolist()) | |
# Create only necessary columns | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)], | |
select_columns=SelectColumns( | |
default_selection=["Method"], # Start with just Method column | |
cant_deselect=["Method"], # Method column should always be visible | |
label="Select Columns to Display:", | |
), | |
search_columns=["Method"], | |
hide_columns=[], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def init_leaderboard(dataframe, track): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
# filter for correct track | |
dataframe = dataframe.loc[dataframe["Track"] == track] | |
# print(f"\n\n\n dataframe is {dataframe}\n\n\n") | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def process_json(temp_file): | |
if temp_file is None: | |
return {} | |
# Handle file upload | |
try: | |
file_path = temp_file.name | |
if file_path.endswith('.gz'): | |
with gzip.open(file_path, 'rt') as f: | |
data = json.load(f) | |
else: | |
with open(file_path, 'r') as f: | |
data = json.load(f) | |
except Exception as e: | |
raise gr.Error(f"Error processing file: {str(e)}") | |
gr.Markdown("Upload successful!") | |
return data | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0): | |
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict") | |
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1): | |
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small") | |
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2): | |
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal") | |
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4): | |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.TabItem("πΆ Submit", elem_id="llm-benchmark-tab-table", id=5): | |
# with gr.Column(): | |
# with gr.Row(): | |
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
# with gr.TabItem("Subgraph", elem_id="subgraph", id=0): | |
# leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph") | |
with gr.TabItem("Subgraph", elem_id="subgraph", id=0): | |
# Add description for filters | |
gr.Markdown(""" | |
### Filtering Options | |
Use the dropdown menus below to filter results by specific tasks or models. | |
You can combine filters to see specific task-model combinations. | |
""") | |
leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph") | |
# Then modify the Causal Graph tab section | |
with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1): | |
with gr.Tabs() as causalgraph_tabs: | |
with gr.TabItem("Detailed View", id=0): | |
leaderboard_detailed = init_leaderboard_mib_causalgraph( | |
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, | |
"Causal Graph" | |
) | |
with gr.TabItem("Aggregated View", id=1): | |
leaderboard_aggregated = init_leaderboard_mib_causalgraph( | |
LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, | |
"Causal Graph" | |
) | |
with gr.TabItem("Intervention Averaged", id=2): | |
leaderboard_averaged = init_leaderboard_mib_causalgraph( | |
LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED, | |
"Causal Graph" | |
) | |
# with gr.Row(): | |
# with gr.Accordion("π Citation", open=False): | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# label=CITATION_BUTTON_LABEL, | |
# lines=20, | |
# elem_id="citation-button", | |
# show_copy_button=True, | |
# ) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.launch(share=True, ssr_mode=False) | |