jasonshaoshun commited on
Commit
202dbe2
·
1 Parent(s): 51441a1
Files changed (1) hide show
  1. src/populate.py +37 -3
src/populate.py CHANGED
@@ -109,13 +109,43 @@ def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
109
 
110
  return aggregated_df
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
113
  """Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
114
  df_copy = df.copy()
115
 
116
- # Remove the Method column and eval_name if present
117
- columns_to_drop = ['Method', 'eval_name']
118
- df_copy = df_copy.drop(columns=[col for col in columns_to_drop if col in df_copy.columns])
 
 
 
 
 
 
119
 
120
  # Group columns by model_task
121
  model_task_groups = {}
@@ -131,6 +161,10 @@ def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
131
  for model_task, cols in model_task_groups.items()
132
  })
133
 
 
 
 
 
134
  return averaged_df
135
 
136
  # def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
 
109
 
110
  return aggregated_df
111
 
112
+ # def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
113
+ # """Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
114
+ # df_copy = df.copy()
115
+
116
+ # # Remove the Method column and eval_name if present
117
+ # columns_to_drop = ['Method', 'eval_name']
118
+ # df_copy = df_copy.drop(columns=[col for col in columns_to_drop if col in df_copy.columns])
119
+
120
+ # # Group columns by model_task
121
+ # model_task_groups = {}
122
+ # for col in df_copy.columns:
123
+ # model_task = '_'.join(col.split('_')[:2]) # Get model_task part
124
+ # if model_task not in model_task_groups:
125
+ # model_task_groups[model_task] = []
126
+ # model_task_groups[model_task].append(col)
127
+
128
+ # # Create new DataFrame with averaged intervention scores
129
+ # averaged_df = pd.DataFrame({
130
+ # model_task: df_copy[cols].mean(axis=1).round(3)
131
+ # for model_task, cols in model_task_groups.items()
132
+ # })
133
+
134
+ # return averaged_df
135
+
136
  def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
137
  """Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
138
  df_copy = df.copy()
139
 
140
+ # Store Method column if it exists
141
+ method_col = None
142
+ if 'Method' in df_copy.columns:
143
+ method_col = df_copy['Method']
144
+ df_copy = df_copy.drop('Method', axis=1)
145
+
146
+ # Remove eval_name if present
147
+ if 'eval_name' in df_copy.columns:
148
+ df_copy = df_copy.drop('eval_name', axis=1)
149
 
150
  # Group columns by model_task
151
  model_task_groups = {}
 
161
  for model_task, cols in model_task_groups.items()
162
  })
163
 
164
+ # Add Method column back
165
+ if method_col is not None:
166
+ averaged_df.insert(0, 'Method', method_col)
167
+
168
  return averaged_df
169
 
170
  # def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: