Spaces:
Running
Running
Aaron Mueller
commited on
Commit
·
2817fcb
1
Parent(s):
4493851
support all model/task combinations
Browse files- app.py +17 -17
- caulsal_metric.py +6 -6
- src/about.py +6 -2
- src/display/utils.py +1 -1
- src/leaderboard/read_evals.py +42 -28
- src/populate.py +10 -10
app.py
CHANGED
@@ -45,7 +45,7 @@ def restart_space():
|
|
45 |
|
46 |
### Space initialisation
|
47 |
try:
|
48 |
-
print(EVAL_REQUESTS_PATH)
|
49 |
snapshot_download(
|
50 |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
51 |
)
|
@@ -54,7 +54,7 @@ except Exception:
|
|
54 |
|
55 |
|
56 |
try:
|
57 |
-
print(RESULTS_REPO_MIB_SUBGRAPH)
|
58 |
snapshot_download(
|
59 |
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
60 |
)
|
@@ -63,7 +63,7 @@ except Exception:
|
|
63 |
|
64 |
|
65 |
try:
|
66 |
-
print(RESULTS_REPO_MIB_CAUSALGRAPH)
|
67 |
snapshot_download(
|
68 |
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
69 |
)
|
@@ -95,7 +95,7 @@ LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGAT
|
|
95 |
|
96 |
|
97 |
def init_leaderboard_mib_subgraph(dataframe, track):
|
98 |
-
print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
|
99 |
|
100 |
if dataframe is None or dataframe.empty:
|
101 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
@@ -103,7 +103,7 @@ def init_leaderboard_mib_subgraph(dataframe, track):
|
|
103 |
# filter for correct track
|
104 |
# dataframe = dataframe.loc[dataframe["Track"] == track]
|
105 |
|
106 |
-
print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
|
107 |
|
108 |
return Leaderboard(
|
109 |
value=dataframe,
|
@@ -120,20 +120,20 @@ def init_leaderboard_mib_subgraph(dataframe, track):
|
|
120 |
)
|
121 |
|
122 |
def init_leaderboard_mib_causalgraph(dataframe, track):
|
123 |
-
print("Debugging column issues:")
|
124 |
-
print("\nActual DataFrame columns:")
|
125 |
-
print(dataframe.columns.tolist())
|
126 |
|
127 |
-
print("\nExpected columns for Leaderboard:")
|
128 |
expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
|
129 |
-
print(expected_cols)
|
130 |
|
131 |
-
print("\nMissing columns:")
|
132 |
missing_cols = [col for col in expected_cols if col not in dataframe.columns]
|
133 |
-
print(missing_cols)
|
134 |
|
135 |
-
print("\nSample of DataFrame content:")
|
136 |
-
print(dataframe.head().to_string())
|
137 |
|
138 |
return Leaderboard(
|
139 |
value=dataframe,
|
@@ -150,9 +150,9 @@ def init_leaderboard_mib_causalgraph(dataframe, track):
|
|
150 |
)
|
151 |
|
152 |
def init_leaderboard_mib_causalgraph(dataframe, track):
|
153 |
-
print("Debugging column issues:")
|
154 |
-
print("\nActual DataFrame columns:")
|
155 |
-
print(dataframe.columns.tolist())
|
156 |
|
157 |
# Create only necessary columns
|
158 |
return Leaderboard(
|
|
|
45 |
|
46 |
### Space initialisation
|
47 |
try:
|
48 |
+
# print(EVAL_REQUESTS_PATH)
|
49 |
snapshot_download(
|
50 |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
51 |
)
|
|
|
54 |
|
55 |
|
56 |
try:
|
57 |
+
# print(RESULTS_REPO_MIB_SUBGRAPH)
|
58 |
snapshot_download(
|
59 |
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
60 |
)
|
|
|
63 |
|
64 |
|
65 |
try:
|
66 |
+
# print(RESULTS_REPO_MIB_CAUSALGRAPH)
|
67 |
snapshot_download(
|
68 |
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
69 |
)
|
|
|
95 |
|
96 |
|
97 |
def init_leaderboard_mib_subgraph(dataframe, track):
|
98 |
+
# print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
|
99 |
|
100 |
if dataframe is None or dataframe.empty:
|
101 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
103 |
# filter for correct track
|
104 |
# dataframe = dataframe.loc[dataframe["Track"] == track]
|
105 |
|
106 |
+
# print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
|
107 |
|
108 |
return Leaderboard(
|
109 |
value=dataframe,
|
|
|
120 |
)
|
121 |
|
122 |
def init_leaderboard_mib_causalgraph(dataframe, track):
|
123 |
+
# print("Debugging column issues:")
|
124 |
+
# print("\nActual DataFrame columns:")
|
125 |
+
# print(dataframe.columns.tolist())
|
126 |
|
127 |
+
# print("\nExpected columns for Leaderboard:")
|
128 |
expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
|
129 |
+
# print(expected_cols)
|
130 |
|
131 |
+
# print("\nMissing columns:")
|
132 |
missing_cols = [col for col in expected_cols if col not in dataframe.columns]
|
133 |
+
# print(missing_cols)
|
134 |
|
135 |
+
# print("\nSample of DataFrame content:")
|
136 |
+
# print(dataframe.head().to_string())
|
137 |
|
138 |
return Leaderboard(
|
139 |
value=dataframe,
|
|
|
150 |
)
|
151 |
|
152 |
def init_leaderboard_mib_causalgraph(dataframe, track):
|
153 |
+
# print("Debugging column issues:")
|
154 |
+
# print("\nActual DataFrame columns:")
|
155 |
+
# print(dataframe.columns.tolist())
|
156 |
|
157 |
# Create only necessary columns
|
158 |
return Leaderboard(
|
caulsal_metric.py
CHANGED
@@ -235,9 +235,9 @@ if __name__ == "__main__":
|
|
235 |
folder_path = "./json_files"
|
236 |
detailed_df, aggregated_df, intervention_averaged_df = process_json_folder(folder_path)
|
237 |
|
238 |
-
print("Detailed Results (including duplicates):")
|
239 |
-
print(detailed_df)
|
240 |
-
print("\nAggregated Results (max scores per method):")
|
241 |
-
print(aggregated_df)
|
242 |
-
print("\nIntervention-Averaged Results:")
|
243 |
-
print(intervention_averaged_df)
|
|
|
235 |
folder_path = "./json_files"
|
236 |
detailed_df, aggregated_df, intervention_averaged_df = process_json_folder(folder_path)
|
237 |
|
238 |
+
# print("Detailed Results (including duplicates):")
|
239 |
+
# print(detailed_df)
|
240 |
+
# print("\nAggregated Results (max scores per method):")
|
241 |
+
# print(aggregated_df)
|
242 |
+
# print("\nIntervention-Averaged Results:")
|
243 |
+
# print(intervention_averaged_df)
|
src/about.py
CHANGED
@@ -40,8 +40,12 @@ class TaskMIB_Subgraph:
|
|
40 |
metrics: list[str] # metrics to store (edge_counts, faithfulness)
|
41 |
|
42 |
class TasksMib_Subgraph(Enum):
|
43 |
-
task0 = TaskMIB_Subgraph("ioi", ["
|
44 |
-
task1 = TaskMIB_Subgraph("mcqa", ["
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
|
|
|
40 |
metrics: list[str] # metrics to store (edge_counts, faithfulness)
|
41 |
|
42 |
class TasksMib_Subgraph(Enum):
|
43 |
+
task0 = TaskMIB_Subgraph("ioi", ["gpt2", "qwen2_5", "gemma2", "llama3"], "IOI", ["edge_counts", "faithfulness"])
|
44 |
+
task1 = TaskMIB_Subgraph("mcqa", ["qwen2_5", "gemma2", "llama3"], "MCQA", ["edge_counts", "faithfulness"])
|
45 |
+
task2 = TaskMIB_Subgraph("arithmetic_addition", ["llama3"], "arithmetic_addition", ["edge_counts", "faithfulness"])
|
46 |
+
task3 = TaskMIB_Subgraph("arithmetic_subtraction", ["llama3"], "arithmetic_subtraction", ["edge_counts", "faithfulness"])
|
47 |
+
task4 = TaskMIB_Subgraph("arc_easy", ["gemma2", "llama3"], "arc_easy", ["edge_counts", "faithfulness"])
|
48 |
+
task5 = TaskMIB_Subgraph("arc_challenge", ["llama3"], "arc_challenge", ["edge_counts", "faithfulness"])
|
49 |
|
50 |
|
51 |
|
src/display/utils.py
CHANGED
@@ -68,7 +68,7 @@ auto_eval_column_dict_mib_subgraph.append(["method", ColumnContent, ColumnConten
|
|
68 |
# For each task and model combination
|
69 |
for task in TasksMib_Subgraph:
|
70 |
for model in task.value.models:
|
71 |
-
col_name = f"{task.value.benchmark}_{model}" #
|
72 |
auto_eval_column_dict_mib_subgraph.append([
|
73 |
col_name,
|
74 |
ColumnContent,
|
|
|
68 |
# For each task and model combination
|
69 |
for task in TasksMib_Subgraph:
|
70 |
for model in task.value.models:
|
71 |
+
col_name = f"{task.value.benchmark}_{model}" # ioi_gpt2, mcqa_qwen2.5, etc.
|
72 |
auto_eval_column_dict_mib_subgraph.append([
|
73 |
col_name,
|
74 |
ColumnContent,
|
src/leaderboard/read_evals.py
CHANGED
@@ -29,9 +29,9 @@ def compute_area(edge_counts, faithfulnesses, log_scale=True):
|
|
29 |
x_1 = percentages[i_1]
|
30 |
x_2 = percentages[i_2]
|
31 |
# area from point to 100
|
32 |
-
if log_scale:
|
33 |
-
|
34 |
-
|
35 |
trapezoidal = (percentages[i_2] - percentages[i_1]) * \
|
36 |
(((abs(1. - faithfulnesses[i_1])) + (abs(1. - faithfulnesses[i_2]))) / 2)
|
37 |
area_from_100 += trapezoidal
|
@@ -58,7 +58,7 @@ class EvalResult_MIB_SUBGRAPH:
|
|
58 |
|
59 |
# Initialize results dictionary with the exact structure from JSON
|
60 |
results = {}
|
61 |
-
for task in ["ioi", "mcqa"]: # Use exact task names from JSON
|
62 |
results[task] = {}
|
63 |
|
64 |
# Process each model's results maintaining original structure
|
@@ -67,17 +67,19 @@ class EvalResult_MIB_SUBGRAPH:
|
|
67 |
if "/" in model_id:
|
68 |
org = model_id.split("/")[0]
|
69 |
if org == "meta-llama":
|
70 |
-
model_name = "
|
71 |
elif org == "Qwen":
|
72 |
-
model_name = "
|
73 |
elif "gpt" in model_id.lower():
|
74 |
model_name = "gpt2"
|
|
|
|
|
75 |
else:
|
76 |
-
model_name = model_id
|
77 |
|
78 |
# Keep exact scores structure from JSON
|
79 |
scores = model_result.get("scores", {})
|
80 |
-
for task in ["ioi", "mcqa"]:
|
81 |
if task in scores:
|
82 |
results[task][model_name] = {
|
83 |
"edge_counts": scores[task]["edge_counts"],
|
@@ -100,10 +102,16 @@ class EvalResult_MIB_SUBGRAPH:
|
|
100 |
}
|
101 |
|
102 |
# Initialize all possible columns with '-'
|
103 |
-
expected_models = ["
|
104 |
-
expected_tasks = ["ioi", "mcqa"]
|
105 |
for task in expected_tasks:
|
106 |
for model in expected_models:
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
data_dict[f"{task}_{model}"] = '-'
|
108 |
|
109 |
all_scores = []
|
@@ -117,24 +125,30 @@ class EvalResult_MIB_SUBGRAPH:
|
|
117 |
faithfulness = metrics["faithfulness"]
|
118 |
if isinstance(faithfulness[0], list):
|
119 |
faithfulness = faithfulness[0]
|
120 |
-
|
121 |
result = compute_area(metrics["edge_counts"], faithfulness)
|
122 |
if result is None or result[0] is None:
|
123 |
continue
|
124 |
|
125 |
area_under, _, _ = result
|
126 |
-
score = area_under
|
127 |
data_dict[col_name] = round(score, 2)
|
128 |
all_scores.append(score)
|
129 |
|
130 |
# All entries must be present for average
|
131 |
required_entries = [
|
132 |
-
data_dict['
|
133 |
-
data_dict['
|
134 |
data_dict['ioi_gpt2'] != '-',
|
135 |
-
data_dict['
|
136 |
-
data_dict['
|
137 |
-
data_dict['
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
]
|
139 |
|
140 |
data_dict["Average"] = round(np.mean(all_scores), 2) if all(required_entries) else '-'
|
@@ -145,10 +159,10 @@ def get_raw_eval_results_mib_subgraph(results_path: str, requests_path: str) ->
|
|
145 |
"""From the path of the results folder root, extract all needed info for MIB results"""
|
146 |
model_result_filepaths = []
|
147 |
|
148 |
-
print(f"results_path is {results_path}")
|
149 |
|
150 |
for root, dirnames, files in os.walk(results_path):
|
151 |
-
print(f"root is {root}, dirnames is {dirnames}, files is {files}")
|
152 |
# We should only have json files in model results
|
153 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
154 |
continue
|
@@ -162,14 +176,14 @@ def get_raw_eval_results_mib_subgraph(results_path: str, requests_path: str) ->
|
|
162 |
for file in files:
|
163 |
model_result_filepaths.append(os.path.join(root, file))
|
164 |
|
165 |
-
print(f"model_result_filepaths is {model_result_filepaths}")
|
166 |
|
167 |
eval_results = []
|
168 |
for model_result_filepath in model_result_filepaths:
|
169 |
try:
|
170 |
eval_result = EvalResult_MIB_SUBGRAPH("", "", {}) # Create empty instance
|
171 |
result = eval_result.init_from_json_file(model_result_filepath)
|
172 |
-
print(f"eval_result.init_from_json_file(model_result_filepath) is {result}")
|
173 |
# Verify the result can be converted to dict format
|
174 |
result.to_dict()
|
175 |
eval_results.append(result)
|
@@ -424,10 +438,10 @@ class EvalResult_MIB_CAUSALGRAPH:
|
|
424 |
def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str) -> List[EvalResult_MIB_CAUSALGRAPH]:
|
425 |
model_result_filepaths = []
|
426 |
|
427 |
-
print(f"Scanning directory: {results_path}")
|
428 |
for root, dirnames, files in os.walk(results_path):
|
429 |
-
print(f"Current directory: {root}")
|
430 |
-
print(f"Found files: {files}")
|
431 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
432 |
continue
|
433 |
|
@@ -439,21 +453,21 @@ def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str)
|
|
439 |
for file in files:
|
440 |
model_result_filepaths.append(os.path.join(root, file))
|
441 |
|
442 |
-
print(f"Found json files: {model_result_filepaths}")
|
443 |
|
444 |
eval_results = []
|
445 |
for filepath in model_result_filepaths:
|
446 |
try:
|
447 |
eval_result = EvalResult_MIB_CAUSALGRAPH("", "", {})
|
448 |
result = eval_result.init_from_json_file(filepath)
|
449 |
-
print(f"Processed file {filepath}")
|
450 |
-
print(f"Got result: {result}")
|
451 |
eval_results.append(result)
|
452 |
except Exception as e:
|
453 |
print(f"Error processing {filepath}: {e}")
|
454 |
continue
|
455 |
|
456 |
-
print(f"Total results processed: {len(eval_results)}")
|
457 |
return eval_results
|
458 |
|
459 |
|
|
|
29 |
x_1 = percentages[i_1]
|
30 |
x_2 = percentages[i_2]
|
31 |
# area from point to 100
|
32 |
+
# if log_scale:
|
33 |
+
# x_1 = math.log(x_1)
|
34 |
+
# x_2 = math.log(x_2)
|
35 |
trapezoidal = (percentages[i_2] - percentages[i_1]) * \
|
36 |
(((abs(1. - faithfulnesses[i_1])) + (abs(1. - faithfulnesses[i_2]))) / 2)
|
37 |
area_from_100 += trapezoidal
|
|
|
58 |
|
59 |
# Initialize results dictionary with the exact structure from JSON
|
60 |
results = {}
|
61 |
+
for task in ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"]: # Use exact task names from JSON
|
62 |
results[task] = {}
|
63 |
|
64 |
# Process each model's results maintaining original structure
|
|
|
67 |
if "/" in model_id:
|
68 |
org = model_id.split("/")[0]
|
69 |
if org == "meta-llama":
|
70 |
+
model_name = "llama3"
|
71 |
elif org == "Qwen":
|
72 |
+
model_name = "qwen2_5"
|
73 |
elif "gpt" in model_id.lower():
|
74 |
model_name = "gpt2"
|
75 |
+
elif org == "google":
|
76 |
+
model_name = "gemma2"
|
77 |
else:
|
78 |
+
model_name = model_id.replace(".", "_")
|
79 |
|
80 |
# Keep exact scores structure from JSON
|
81 |
scores = model_result.get("scores", {})
|
82 |
+
for task in ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"]:
|
83 |
if task in scores:
|
84 |
results[task][model_name] = {
|
85 |
"edge_counts": scores[task]["edge_counts"],
|
|
|
102 |
}
|
103 |
|
104 |
# Initialize all possible columns with '-'
|
105 |
+
expected_models = ["llama3", "qwen2_5", "gpt2", "gemma2"]
|
106 |
+
expected_tasks = ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"]
|
107 |
for task in expected_tasks:
|
108 |
for model in expected_models:
|
109 |
+
if model == "gpt2" and task != "ioi":
|
110 |
+
continue
|
111 |
+
if model == "qwen2_5" and task.startswith(("arithmetic", "arc")):
|
112 |
+
continue
|
113 |
+
if model == "gemma2" and (task.startswith("arithmetic") or task == "arc_challenge"):
|
114 |
+
continue
|
115 |
data_dict[f"{task}_{model}"] = '-'
|
116 |
|
117 |
all_scores = []
|
|
|
125 |
faithfulness = metrics["faithfulness"]
|
126 |
if isinstance(faithfulness[0], list):
|
127 |
faithfulness = faithfulness[0]
|
128 |
+
|
129 |
result = compute_area(metrics["edge_counts"], faithfulness)
|
130 |
if result is None or result[0] is None:
|
131 |
continue
|
132 |
|
133 |
area_under, _, _ = result
|
134 |
+
score = area_under
|
135 |
data_dict[col_name] = round(score, 2)
|
136 |
all_scores.append(score)
|
137 |
|
138 |
# All entries must be present for average
|
139 |
required_entries = [
|
140 |
+
data_dict['ioi_llama3'] != '-',
|
141 |
+
data_dict['ioi_qwen2_5'] != '-',
|
142 |
data_dict['ioi_gpt2'] != '-',
|
143 |
+
data_dict['ioi_gemma2'] != '-',
|
144 |
+
data_dict['mcqa_llama3'] != '-',
|
145 |
+
data_dict['mcqa_qwen2_5'] != '-',
|
146 |
+
data_dict['mcqa_gemma2'] != '-',
|
147 |
+
data_dict['arithmetic_addition_llama3'] != '-',
|
148 |
+
data_dict['arithmetic_subtraction_llama3'] != '-',
|
149 |
+
data_dict['arc_easy_gemma2'] != '-',
|
150 |
+
data_dict['arc_easy_llama3'] != '-',
|
151 |
+
data_dict['arc_challenge_llama3'] != '-'
|
152 |
]
|
153 |
|
154 |
data_dict["Average"] = round(np.mean(all_scores), 2) if all(required_entries) else '-'
|
|
|
159 |
"""From the path of the results folder root, extract all needed info for MIB results"""
|
160 |
model_result_filepaths = []
|
161 |
|
162 |
+
# print(f"results_path is {results_path}")
|
163 |
|
164 |
for root, dirnames, files in os.walk(results_path):
|
165 |
+
# print(f"root is {root}, dirnames is {dirnames}, files is {files}")
|
166 |
# We should only have json files in model results
|
167 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
168 |
continue
|
|
|
176 |
for file in files:
|
177 |
model_result_filepaths.append(os.path.join(root, file))
|
178 |
|
179 |
+
# print(f"model_result_filepaths is {model_result_filepaths}")
|
180 |
|
181 |
eval_results = []
|
182 |
for model_result_filepath in model_result_filepaths:
|
183 |
try:
|
184 |
eval_result = EvalResult_MIB_SUBGRAPH("", "", {}) # Create empty instance
|
185 |
result = eval_result.init_from_json_file(model_result_filepath)
|
186 |
+
# print(f"eval_result.init_from_json_file(model_result_filepath) is {result}")
|
187 |
# Verify the result can be converted to dict format
|
188 |
result.to_dict()
|
189 |
eval_results.append(result)
|
|
|
438 |
def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str) -> List[EvalResult_MIB_CAUSALGRAPH]:
|
439 |
model_result_filepaths = []
|
440 |
|
441 |
+
# print(f"Scanning directory: {results_path}")
|
442 |
for root, dirnames, files in os.walk(results_path):
|
443 |
+
# print(f"Current directory: {root}")
|
444 |
+
# print(f"Found files: {files}")
|
445 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
446 |
continue
|
447 |
|
|
|
453 |
for file in files:
|
454 |
model_result_filepaths.append(os.path.join(root, file))
|
455 |
|
456 |
+
# print(f"Found json files: {model_result_filepaths}")
|
457 |
|
458 |
eval_results = []
|
459 |
for filepath in model_result_filepaths:
|
460 |
try:
|
461 |
eval_result = EvalResult_MIB_CAUSALGRAPH("", "", {})
|
462 |
result = eval_result.init_from_json_file(filepath)
|
463 |
+
# print(f"Processed file {filepath}")
|
464 |
+
# print(f"Got result: {result}")
|
465 |
eval_results.append(result)
|
466 |
except Exception as e:
|
467 |
print(f"Error processing {filepath}: {e}")
|
468 |
continue
|
469 |
|
470 |
+
# print(f"Total results processed: {len(eval_results)}")
|
471 |
return eval_results
|
472 |
|
473 |
|
src/populate.py
CHANGED
@@ -10,11 +10,11 @@ from src.about import TasksMib_Causalgraph
|
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
-
print(f"results_path is {results_path}, requests_path is {requests_path}")
|
14 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
15 |
-
print(f"raw_data is {raw_data}")
|
16 |
all_data_json = [v.to_dict() for v in raw_data]
|
17 |
-
print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
|
18 |
all_data_json_filtered = []
|
19 |
for item in all_data_json:
|
20 |
item["Track"] = item["eval_name"].split("_")[-1]
|
@@ -32,7 +32,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
32 |
# df = df.sort_values(by=[Tasks.task0.value.col_name], ascending=False)
|
33 |
# df = df.sort_values(by=[AutoEvalColumn.track.name], ascending=False)
|
34 |
|
35 |
-
print(f"df is {df}")
|
36 |
|
37 |
# df = df[cols].round(decimals=1)
|
38 |
|
@@ -44,13 +44,13 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
44 |
|
45 |
def get_leaderboard_df_mib_subgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
46 |
"""Creates a dataframe from all the MIB experiment results"""
|
47 |
-
print(f"results_path is {results_path}, requests_path is {requests_path}")
|
48 |
raw_data = get_raw_eval_results_mib_subgraph(results_path, requests_path)
|
49 |
-
print(f"raw_data is {raw_data}")
|
50 |
|
51 |
# Convert each result to dict format
|
52 |
all_data_json = [v.to_dict() for v in raw_data]
|
53 |
-
print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
|
54 |
|
55 |
# Convert to dataframe
|
56 |
df = pd.DataFrame.from_records(all_data_json)
|
@@ -242,7 +242,7 @@ def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
|
|
242 |
# return detailed_df, aggregated_df, intervention_averaged_df
|
243 |
|
244 |
def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
245 |
-
print(f"results_path is {results_path}, requests_path is {requests_path}")
|
246 |
raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
|
247 |
|
248 |
# Convert each result to dict format for detailed df
|
@@ -250,7 +250,7 @@ def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, co
|
|
250 |
detailed_df = pd.DataFrame.from_records(all_data_json)
|
251 |
|
252 |
# Print the actual columns for debugging
|
253 |
-
print("Original columns:", detailed_df.columns.tolist())
|
254 |
|
255 |
# Rename columns to match schema
|
256 |
column_mapping = {}
|
@@ -271,7 +271,7 @@ def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, co
|
|
271 |
# Create intervention-averaged df
|
272 |
intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
|
273 |
|
274 |
-
print("Transformed columns:", detailed_df.columns.tolist())
|
275 |
|
276 |
return detailed_df, aggregated_df, intervention_averaged_df
|
277 |
|
|
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
+
# print(f"results_path is {results_path}, requests_path is {requests_path}")
|
14 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
15 |
+
# print(f"raw_data is {raw_data}")
|
16 |
all_data_json = [v.to_dict() for v in raw_data]
|
17 |
+
# print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
|
18 |
all_data_json_filtered = []
|
19 |
for item in all_data_json:
|
20 |
item["Track"] = item["eval_name"].split("_")[-1]
|
|
|
32 |
# df = df.sort_values(by=[Tasks.task0.value.col_name], ascending=False)
|
33 |
# df = df.sort_values(by=[AutoEvalColumn.track.name], ascending=False)
|
34 |
|
35 |
+
# print(f"df is {df}")
|
36 |
|
37 |
# df = df[cols].round(decimals=1)
|
38 |
|
|
|
44 |
|
45 |
def get_leaderboard_df_mib_subgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
46 |
"""Creates a dataframe from all the MIB experiment results"""
|
47 |
+
# print(f"results_path is {results_path}, requests_path is {requests_path}")
|
48 |
raw_data = get_raw_eval_results_mib_subgraph(results_path, requests_path)
|
49 |
+
# print(f"raw_data is {raw_data}")
|
50 |
|
51 |
# Convert each result to dict format
|
52 |
all_data_json = [v.to_dict() for v in raw_data]
|
53 |
+
# print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
|
54 |
|
55 |
# Convert to dataframe
|
56 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
242 |
# return detailed_df, aggregated_df, intervention_averaged_df
|
243 |
|
244 |
def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
245 |
+
# print(f"results_path is {results_path}, requests_path is {requests_path}")
|
246 |
raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
|
247 |
|
248 |
# Convert each result to dict format for detailed df
|
|
|
250 |
detailed_df = pd.DataFrame.from_records(all_data_json)
|
251 |
|
252 |
# Print the actual columns for debugging
|
253 |
+
# print("Original columns:", detailed_df.columns.tolist())
|
254 |
|
255 |
# Rename columns to match schema
|
256 |
column_mapping = {}
|
|
|
271 |
# Create intervention-averaged df
|
272 |
intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
|
273 |
|
274 |
+
# print("Transformed columns:", detailed_df.columns.tolist())
|
275 |
|
276 |
return detailed_df, aggregated_df, intervention_averaged_df
|
277 |
|