Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import gzip
|
3 |
+
import gradio as gr
|
4 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
5 |
+
import pandas as pd
|
6 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
+
from huggingface_hub import snapshot_download
|
8 |
+
from io import StringIO
|
9 |
+
|
10 |
+
from src.about import (
|
11 |
+
CITATION_BUTTON_LABEL,
|
12 |
+
CITATION_BUTTON_TEXT,
|
13 |
+
EVALUATION_QUEUE_TEXT,
|
14 |
+
INTRODUCTION_TEXT,
|
15 |
+
LLM_BENCHMARKS_TEXT,
|
16 |
+
TITLE,
|
17 |
+
)
|
18 |
+
from src.display.css_html_js import custom_css
|
19 |
+
from src.display.utils import (
|
20 |
+
BENCHMARK_COLS,
|
21 |
+
BENCHMARK_COLS_MULTIMODAL,
|
22 |
+
BENCHMARK_COLS_MIB,
|
23 |
+
COLS,
|
24 |
+
COLS_MIB,
|
25 |
+
COLS_MULTIMODAL,
|
26 |
+
EVAL_COLS,
|
27 |
+
EVAL_TYPES,
|
28 |
+
AutoEvalColumn,
|
29 |
+
AutoEvalColumn_mib,
|
30 |
+
fields,
|
31 |
+
)
|
32 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH
|
33 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib
|
34 |
+
from src.submission.submit import add_new_eval
|
35 |
+
|
36 |
+
print("restart_space ")
|
37 |
+
|
38 |
+
def restart_space():
|
39 |
+
API.restart_space(repo_id=REPO_ID)
|
40 |
+
|
41 |
+
print("end restart_space")
|
42 |
+
|
43 |
+
|
44 |
+
print("Space initialisation ")
|
45 |
+
### Space initialisation
|
46 |
+
print("EVAL_REQUESTS_PATH")
|
47 |
+
try:
|
48 |
+
print(EVAL_REQUESTS_PATH)
|
49 |
+
snapshot_download(
|
50 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
51 |
+
)
|
52 |
+
except Exception:
|
53 |
+
restart_space()
|
54 |
+
|
55 |
+
print("EVAL_RESULTS_PATH")
|
56 |
+
try:
|
57 |
+
print(EVAL_RESULTS_PATH)
|
58 |
+
snapshot_download(
|
59 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
60 |
+
)
|
61 |
+
except Exception:
|
62 |
+
restart_space()
|
63 |
+
|
64 |
+
print("RESULTS_REPO_MIB_SUBGRAPH")
|
65 |
+
try:
|
66 |
+
print(RESULTS_REPO_MIB_SUBGRAPH)
|
67 |
+
snapshot_download(
|
68 |
+
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
69 |
+
)
|
70 |
+
except Exception:
|
71 |
+
restart_space()
|
72 |
+
|
73 |
+
print("End Space initialisation ")
|
74 |
+
|
75 |
+
|
76 |
+
LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB, BENCHMARK_COLS_MIB)
|
77 |
+
|
78 |
+
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
79 |
+
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)
|
80 |
+
|
81 |
+
(
|
82 |
+
finished_eval_queue_df,
|
83 |
+
running_eval_queue_df,
|
84 |
+
pending_eval_queue_df,
|
85 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
86 |
+
|
87 |
+
|
88 |
+
def init_leaderboard_mib(dataframe, track):
|
89 |
+
print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
|
90 |
+
|
91 |
+
if dataframe is None or dataframe.empty:
|
92 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
93 |
+
|
94 |
+
# filter for correct track
|
95 |
+
# dataframe = dataframe.loc[dataframe["Track"] == track]
|
96 |
+
|
97 |
+
print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
|
98 |
+
|
99 |
+
return Leaderboard(
|
100 |
+
value=dataframe,
|
101 |
+
datatype=[c.type for c in fields(AutoEvalColumn_mib)],
|
102 |
+
select_columns=SelectColumns(
|
103 |
+
default_selection=[c.name for c in fields(AutoEvalColumn_mib) if c.displayed_by_default],
|
104 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn_mib) if c.never_hidden],
|
105 |
+
label="Select Columns to Display:",
|
106 |
+
),
|
107 |
+
search_columns=["Method"], # Changed from AutoEvalColumn_mib.model.name to "Method"
|
108 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn_mib) if c.hidden],
|
109 |
+
bool_checkboxgroup_label="Hide models",
|
110 |
+
interactive=False,
|
111 |
+
)
|
112 |
+
|
113 |
+
def init_leaderboard(dataframe, track):
|
114 |
+
if dataframe is None or dataframe.empty:
|
115 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
116 |
+
# filter for correct track
|
117 |
+
dataframe = dataframe.loc[dataframe["Track"] == track]
|
118 |
+
|
119 |
+
# print(f"\n\n\n dataframe is {dataframe}\n\n\n")
|
120 |
+
|
121 |
+
return Leaderboard(
|
122 |
+
value=dataframe,
|
123 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
124 |
+
select_columns=SelectColumns(
|
125 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
126 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
127 |
+
label="Select Columns to Display:",
|
128 |
+
),
|
129 |
+
search_columns=[AutoEvalColumn.model.name],
|
130 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
131 |
+
bool_checkboxgroup_label="Hide models",
|
132 |
+
interactive=False,
|
133 |
+
)
|
134 |
+
|
135 |
+
def process_json(temp_file):
|
136 |
+
if temp_file is None:
|
137 |
+
return {}
|
138 |
+
|
139 |
+
# Handle file upload
|
140 |
+
try:
|
141 |
+
file_path = temp_file.name
|
142 |
+
if file_path.endswith('.gz'):
|
143 |
+
with gzip.open(file_path, 'rt') as f:
|
144 |
+
data = json.load(f)
|
145 |
+
else:
|
146 |
+
with open(file_path, 'r') as f:
|
147 |
+
data = json.load(f)
|
148 |
+
except Exception as e:
|
149 |
+
raise gr.Error(f"Error processing file: {str(e)}")
|
150 |
+
|
151 |
+
gr.Markdown("Upload successful!")
|
152 |
+
return data
|
153 |
+
|
154 |
+
|
155 |
+
demo = gr.Blocks(css=custom_css)
|
156 |
+
with demo:
|
157 |
+
gr.HTML(TITLE)
|
158 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
159 |
+
|
160 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
161 |
+
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
|
162 |
+
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
|
163 |
+
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
|
164 |
+
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
|
165 |
+
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
|
166 |
+
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")
|
167 |
+
|
168 |
+
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
|
169 |
+
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
170 |
+
|
171 |
+
# with gr.TabItem("πΆ Submit", elem_id="llm-benchmark-tab-table", id=5):
|
172 |
+
# with gr.Column():
|
173 |
+
# with gr.Row():
|
174 |
+
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
175 |
+
|
176 |
+
with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
|
177 |
+
leaderboard = init_leaderboard_mib(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
|
178 |
+
# leaderboard = init_leaderboard_mib(LEADERBOARD_DF, "mib")
|
179 |
+
|
180 |
+
with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
|
181 |
+
leaderboard = init_leaderboard_mib(LEADERBOARD_DF_MIB_SUBGRAPH, "Causal Graph")
|
182 |
+
|
183 |
+
# with gr.Row():
|
184 |
+
# with gr.Accordion("π Citation", open=False):
|
185 |
+
# citation_button = gr.Textbox(
|
186 |
+
# value=CITATION_BUTTON_TEXT,
|
187 |
+
# label=CITATION_BUTTON_LABEL,
|
188 |
+
# lines=20,
|
189 |
+
# elem_id="citation-button",
|
190 |
+
# show_copy_button=True,
|
191 |
+
# )
|
192 |
+
|
193 |
+
scheduler = BackgroundScheduler()
|
194 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
195 |
+
scheduler.start()
|
196 |
+
demo.launch(share=True, ssr_mode=False)
|