jasonshaoshun commited on
Commit
4cc7bcf
·
1 Parent(s): 8b331af
Files changed (1) hide show
  1. src/populate.py +3 -2
src/populate.py CHANGED
@@ -222,20 +222,21 @@ def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
222
  # return detailed_df
223
 
224
  def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
225
- """Creates three dataframes from all the MIB causal graph experiment results"""
226
  print(f"results_path is {results_path}, requests_path is {requests_path}")
227
  raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
228
- print(f"raw_data is {raw_data}")
229
 
230
  # Convert each result to dict format for detailed df
231
  all_data_json = [v.to_dict() for v in raw_data]
232
  detailed_df = pd.DataFrame.from_records(all_data_json)
 
233
 
234
  # Create aggregated df
235
  aggregated_df = aggregate_methods(detailed_df)
 
236
 
237
  # Create intervention-averaged df
238
  intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
 
239
 
240
  return detailed_df, aggregated_df, intervention_averaged_df
241
 
 
222
  # return detailed_df
223
 
224
  def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
 
225
  print(f"results_path is {results_path}, requests_path is {requests_path}")
226
  raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
 
227
 
228
  # Convert each result to dict format for detailed df
229
  all_data_json = [v.to_dict() for v in raw_data]
230
  detailed_df = pd.DataFrame.from_records(all_data_json)
231
+ print("Columns in detailed_df:", detailed_df.columns.tolist()) # Print actual columns
232
 
233
  # Create aggregated df
234
  aggregated_df = aggregate_methods(detailed_df)
235
+ print("Columns in aggregated_df:", aggregated_df.columns.tolist())
236
 
237
  # Create intervention-averaged df
238
  intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
239
+ print("Columns in intervention_averaged_df:", intervention_averaged_df.columns.tolist())
240
 
241
  return detailed_df, aggregated_df, intervention_averaged_df
242