Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
691f4a8
1
Parent(s):
0ae72a8
caulsal-track debug
Browse files- src/leaderboard/read_evals.py +91 -95
src/leaderboard/read_evals.py
CHANGED
@@ -174,97 +174,97 @@ def get_raw_eval_results_mib_subgraph(results_path: str, requests_path: str) ->
|
|
174 |
|
175 |
|
176 |
|
177 |
-
def process_single_json(json_file: Dict[str, Any], method_counter: int) -> pd.DataFrame:
|
178 |
-
|
179 |
-
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
207 |
-
|
208 |
-
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str) -> List[EvalResult_MIB_CAUSALGRAPH]:
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
|
245 |
-
|
246 |
-
|
247 |
|
248 |
-
|
249 |
|
250 |
-
|
251 |
-
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
|
267 |
-
|
268 |
|
269 |
|
270 |
|
@@ -449,24 +449,20 @@ def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str)
|
|
449 |
data_dicts = []
|
450 |
|
451 |
for filepath in model_result_filepaths:
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
data_dicts.append(data_dict)
|
467 |
-
except Exception as e:
|
468 |
-
print(f"Error processing {filepath}: {e}")
|
469 |
-
continue
|
470 |
|
471 |
if not data_dicts:
|
472 |
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|
|
|
174 |
|
175 |
|
176 |
|
177 |
+
# def process_single_json(json_file: Dict[str, Any], method_counter: int) -> pd.DataFrame:
|
178 |
+
# """
|
179 |
+
# Process a single JSON file and convert it to a DataFrame.
|
180 |
|
181 |
+
# Args:
|
182 |
+
# json_file: Dictionary containing the analysis results
|
183 |
+
# method_counter: Counter for handling duplicate method names
|
184 |
|
185 |
+
# Returns:
|
186 |
+
# pd.DataFrame: DataFrame for single method with MODEL_TASK_INTERVENTION as columns
|
187 |
+
# """
|
188 |
+
# method_name = json_file['method_name']
|
189 |
+
# unique_method_name = f"{method_name}_{method_counter}"
|
190 |
+
# method_scores = []
|
191 |
+
|
192 |
+
# for result in json_file['results']:
|
193 |
+
# model = result['model_id']
|
194 |
|
195 |
+
# for task, scores in result['task_scores'].items():
|
196 |
+
# # Process each layer's data
|
197 |
+
# intervention_scores = defaultdict(list)
|
198 |
|
199 |
+
# for layer_data in scores:
|
200 |
+
# for intervention_data in layer_data['layer_scores']:
|
201 |
+
# # Calculate average score for counterfactuals
|
202 |
+
# avg_cf_score = np.mean([
|
203 |
+
# cf['score']
|
204 |
+
# for cf in intervention_data['counterfactual_scores']
|
205 |
+
# ])
|
206 |
|
207 |
+
# if np.isnan(avg_cf_score):
|
208 |
+
# avg_cf_score = 0.0
|
209 |
|
210 |
+
# # Group scores by intervention
|
211 |
+
# intervention_key = '_'.join(intervention_data['intervention'])
|
212 |
+
# intervention_scores[intervention_key].append(avg_cf_score)
|
213 |
|
214 |
+
# # Average across layers for each intervention
|
215 |
+
# for intervention, layer_scores in intervention_scores.items():
|
216 |
+
# column = f"{model}_{task}_{intervention}"
|
217 |
+
# avg_score = np.mean(layer_scores) if layer_scores else 0.0
|
218 |
+
# method_scores.append((column, f"{avg_score:.3f}"))
|
219 |
+
|
220 |
+
# # Sort by column names for consistency
|
221 |
+
# method_scores.sort(key=lambda x: x[0])
|
222 |
+
# data = {
|
223 |
+
# unique_method_name: {
|
224 |
+
# col: score for col, score in method_scores
|
225 |
+
# }
|
226 |
+
# }
|
227 |
+
|
228 |
+
# return pd.DataFrame.from_dict(data, orient='index')
|
229 |
+
|
230 |
+
# def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str) -> List[EvalResult_MIB_CAUSALGRAPH]:
|
231 |
+
# model_result_filepaths = []
|
232 |
+
|
233 |
+
# # print(f"Scanning directory: {results_path}")
|
234 |
+
# for root, dirnames, files in os.walk(results_path):
|
235 |
+
# # print(f"Current directory: {root}")
|
236 |
+
# # print(f"Found files: {files}")
|
237 |
+
# if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
238 |
+
# continue
|
239 |
|
240 |
+
# try:
|
241 |
+
# files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
242 |
+
# except dateutil.parser._parser.ParserError:
|
243 |
+
# files = [files[-1]]
|
244 |
|
245 |
+
# for file in files:
|
246 |
+
# model_result_filepaths.append(os.path.join(root, file))
|
247 |
|
248 |
+
# # print(f"Found json files: {model_result_filepaths}")
|
249 |
|
250 |
+
# method_counters = defaultdict(int)
|
251 |
+
# dataframes = []
|
252 |
|
253 |
+
# for json_file in model_result_filepaths:
|
254 |
+
# try:
|
255 |
+
# with open(filepath, 'r') as f:
|
256 |
+
# json_data = json.load(f)
|
257 |
+
# method_name = json_data['method_name']
|
258 |
+
# method_counters[method_name] += 1
|
259 |
|
260 |
+
# # Process single JSON file
|
261 |
+
# df = process_single_json(json_data, method_counters[method_name])
|
262 |
+
# dataframes.append(df)
|
263 |
+
# except Exception as e:
|
264 |
+
# print(f"Error processing {json_file}: {e}")
|
265 |
+
# continue
|
266 |
|
267 |
+
# return dataframes
|
268 |
|
269 |
|
270 |
|
|
|
449 |
data_dicts = []
|
450 |
|
451 |
for filepath in model_result_filepaths:
|
452 |
+
with open(filepath, 'r') as f:
|
453 |
+
json_data = json.load(f)
|
454 |
+
method_name = json_data['method_name']
|
455 |
+
method_counters[method_name] += 1
|
456 |
+
|
457 |
+
eval_result = EvalResult_MIB_CAUSALGRAPH("", "", {})
|
458 |
+
result = eval_result.init_from_json_file(filepath)
|
459 |
+
data_dict = result.to_dict()
|
460 |
+
|
461 |
+
# Add method counter to the method name if it's not the first instance
|
462 |
+
if method_counters[method_name] > 1:
|
463 |
+
data_dict["Method"] = f"{method_name}_{method_counters[method_name]}"
|
464 |
+
|
465 |
+
data_dicts.append(data_dict)
|
|
|
|
|
|
|
|
|
466 |
|
467 |
if not data_dicts:
|
468 |
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|