Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
89390c2
1
Parent(s):
5f51841
caulsal-track debug
Browse files- src/leaderboard/read_evals.py +108 -13
- src/populate.py +11 -9
src/leaderboard/read_evals.py
CHANGED
@@ -275,10 +275,12 @@ def get_raw_eval_results_mib_subgraph(results_path: str, requests_path: str) ->
|
|
275 |
from dataclasses import dataclass
|
276 |
import json
|
277 |
import numpy as np
|
|
|
278 |
from typing import Dict, List, Any
|
279 |
import os
|
280 |
from datetime import datetime
|
281 |
import dateutil
|
|
|
282 |
|
283 |
@dataclass
|
284 |
class EvalResult_MIB_CAUSALGRAPH:
|
@@ -354,14 +356,86 @@ class EvalResult_MIB_CAUSALGRAPH:
|
|
354 |
continue
|
355 |
|
356 |
avg_score = np.mean(scores)
|
357 |
-
data_dict[col_name] =
|
358 |
all_scores.append(avg_score)
|
359 |
|
360 |
-
data_dict["Average"] =
|
361 |
return data_dict
|
362 |
|
363 |
|
364 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
"""From the path of the results folder root, extract all needed info for MIB causal graph results"""
|
366 |
model_result_filepaths = []
|
367 |
|
@@ -377,24 +451,45 @@ def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str)
|
|
377 |
for file in files:
|
378 |
model_result_filepaths.append(os.path.join(root, file))
|
379 |
|
380 |
-
|
381 |
-
|
|
|
|
|
382 |
try:
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
except Exception as e:
|
389 |
-
print(f"Error processing {
|
390 |
continue
|
391 |
|
392 |
-
|
393 |
-
|
394 |
|
|
|
|
|
|
|
|
|
|
|
395 |
|
|
|
|
|
396 |
|
|
|
|
|
397 |
|
|
|
398 |
|
399 |
|
400 |
|
|
|
275 |
from dataclasses import dataclass
|
276 |
import json
|
277 |
import numpy as np
|
278 |
+
import pandas as pd
|
279 |
from typing import Dict, List, Any
|
280 |
import os
|
281 |
from datetime import datetime
|
282 |
import dateutil
|
283 |
+
from collections import defaultdict
|
284 |
|
285 |
@dataclass
|
286 |
class EvalResult_MIB_CAUSALGRAPH:
|
|
|
356 |
continue
|
357 |
|
358 |
avg_score = np.mean(scores)
|
359 |
+
data_dict[col_name] = f"{avg_score:.3f}"
|
360 |
all_scores.append(avg_score)
|
361 |
|
362 |
+
data_dict["Average"] = f"{np.mean(all_scores):.3f}" if all_scores else '-'
|
363 |
return data_dict
|
364 |
|
365 |
|
366 |
+
def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
|
367 |
+
"""
|
368 |
+
Aggregates rows with the same base method name by taking the max value for each column.
|
369 |
+
"""
|
370 |
+
# Create a copy of the DataFrame
|
371 |
+
df_copy = df.copy()
|
372 |
+
|
373 |
+
# Extract base method names (remove _2, _3, etc. suffixes)
|
374 |
+
base_methods = [name.split('_')[0] if '_' in name and name.split('_')[-1].isdigit()
|
375 |
+
else name for name in df_copy.index]
|
376 |
+
df_copy.index = base_methods
|
377 |
+
|
378 |
+
# Convert scores to numeric values
|
379 |
+
def extract_score(score_str):
|
380 |
+
if isinstance(score_str, str):
|
381 |
+
return float(score_str)
|
382 |
+
return 0.0
|
383 |
+
|
384 |
+
numeric_df = df_copy.applymap(extract_score)
|
385 |
+
|
386 |
+
# Group by base method name and take the max
|
387 |
+
aggregated_df = numeric_df.groupby(level=0).max().round(3)
|
388 |
+
|
389 |
+
# Convert back to string format
|
390 |
+
aggregated_df = aggregated_df.applymap(lambda x: f"{x:.3f}")
|
391 |
+
|
392 |
+
return aggregated_df
|
393 |
+
|
394 |
+
|
395 |
+
def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
|
396 |
+
"""
|
397 |
+
Creates a DataFrame where columns are model_task and cells are averaged over interventions.
|
398 |
+
"""
|
399 |
+
# Create a copy of the DataFrame
|
400 |
+
df_copy = df.copy()
|
401 |
+
|
402 |
+
# Remove the Average column if it exists
|
403 |
+
if 'Average' in df_copy.columns:
|
404 |
+
df_copy = df_copy.drop('Average', axis=1)
|
405 |
+
|
406 |
+
# Function to extract score value from string
|
407 |
+
def extract_score(score_str):
|
408 |
+
if isinstance(score_str, str):
|
409 |
+
return float(score_str)
|
410 |
+
return 0.0
|
411 |
+
|
412 |
+
# Convert all scores to numeric values
|
413 |
+
numeric_df = df_copy.applymap(extract_score)
|
414 |
+
|
415 |
+
# Group columns by model_task
|
416 |
+
model_task_groups = {}
|
417 |
+
for col in numeric_df.columns:
|
418 |
+
model_task = '_'.join(col.split('_')[:2]) # Get model_task part
|
419 |
+
if model_task not in model_task_groups:
|
420 |
+
model_task_groups[model_task] = []
|
421 |
+
model_task_groups[model_task].append(col)
|
422 |
+
|
423 |
+
# Create new DataFrame with averaged intervention scores
|
424 |
+
averaged_df = pd.DataFrame({
|
425 |
+
model_task: numeric_df[cols].mean(axis=1).round(3)
|
426 |
+
for model_task, cols in model_task_groups.items()
|
427 |
+
})
|
428 |
+
|
429 |
+
# Add overall average column
|
430 |
+
averaged_df['Average'] = averaged_df.mean(axis=1).round(3)
|
431 |
+
|
432 |
+
# Sort by Average column
|
433 |
+
averaged_df = averaged_df.sort_values('Average', ascending=False)
|
434 |
+
|
435 |
+
return averaged_df
|
436 |
+
|
437 |
+
|
438 |
+
def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
439 |
"""From the path of the results folder root, extract all needed info for MIB causal graph results"""
|
440 |
model_result_filepaths = []
|
441 |
|
|
|
451 |
for file in files:
|
452 |
model_result_filepaths.append(os.path.join(root, file))
|
453 |
|
454 |
+
method_counters = defaultdict(int)
|
455 |
+
data_dicts = []
|
456 |
+
|
457 |
+
for filepath in model_result_filepaths:
|
458 |
try:
|
459 |
+
with open(filepath, 'r') as f:
|
460 |
+
json_data = json.load(f)
|
461 |
+
method_name = json_data['method_name']
|
462 |
+
method_counters[method_name] += 1
|
463 |
+
|
464 |
+
eval_result = EvalResult_MIB_CAUSALGRAPH("", "", {})
|
465 |
+
result = eval_result.init_from_json_file(filepath)
|
466 |
+
data_dict = result.to_dict()
|
467 |
+
|
468 |
+
# Add method counter to the method name if it's not the first instance
|
469 |
+
if method_counters[method_name] > 1:
|
470 |
+
data_dict["Method"] = f"{method_name}_{method_counters[method_name]}"
|
471 |
+
|
472 |
+
data_dicts.append(data_dict)
|
473 |
except Exception as e:
|
474 |
+
print(f"Error processing {filepath}: {e}")
|
475 |
continue
|
476 |
|
477 |
+
if not data_dicts:
|
478 |
+
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|
479 |
|
480 |
+
# Create the detailed DataFrame
|
481 |
+
detailed_df = pd.DataFrame(data_dicts)
|
482 |
+
detailed_df.set_index("Method", inplace=True)
|
483 |
+
if "eval_name" in detailed_df.columns:
|
484 |
+
detailed_df.drop("eval_name", axis=1, inplace=True)
|
485 |
|
486 |
+
# Create aggregated DataFrame
|
487 |
+
aggregated_df = aggregate_methods(detailed_df)
|
488 |
|
489 |
+
# Create intervention-averaged DataFrame
|
490 |
+
intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
|
491 |
|
492 |
+
return detailed_df, aggregated_df, intervention_averaged_df
|
493 |
|
494 |
|
495 |
|
src/populate.py
CHANGED
@@ -127,14 +127,16 @@ def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
|
|
127 |
def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
128 |
# print(f"results_path is {results_path}, requests_path is {requests_path}")
|
129 |
|
130 |
-
|
131 |
-
|
|
|
132 |
detailed_df = pd.DataFrame.from_records(all_data_json)
|
133 |
|
134 |
-
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
|
139 |
# # Rename columns to match schema
|
140 |
# column_mapping = {}
|
@@ -149,11 +151,11 @@ def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str) ->
|
|
149 |
|
150 |
# detailed_df = detailed_df.rename(columns=column_mapping)
|
151 |
|
152 |
-
# Create aggregated df
|
153 |
-
aggregated_df = aggregate_methods(detailed_df)
|
154 |
|
155 |
-
# Create intervention-averaged df
|
156 |
-
intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
|
157 |
|
158 |
# print("Transformed columns:", detailed_df.columns.tolist())
|
159 |
|
|
|
127 |
def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
128 |
# print(f"results_path is {results_path}, requests_path is {requests_path}")
|
129 |
|
130 |
+
raw_detailed_df, raw_aggregated_df, raw_intervention_averaged_df = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
|
131 |
+
|
132 |
+
all_data_json = [v.to_dict() for v in raw_detailed_df]
|
133 |
detailed_df = pd.DataFrame.from_records(all_data_json)
|
134 |
|
135 |
+
all_data_json = [v.to_dict() for v in raw_aggregated_df]
|
136 |
+
aggregated_df = pd.DataFrame.from_records(all_data_json)
|
137 |
|
138 |
+
all_data_json = [v.to_dict() for v in raw_intervention_averaged_df]
|
139 |
+
intervention_averaged_df = pd.DataFrame.from_records(all_data_json)
|
140 |
|
141 |
# # Rename columns to match schema
|
142 |
# column_mapping = {}
|
|
|
151 |
|
152 |
# detailed_df = detailed_df.rename(columns=column_mapping)
|
153 |
|
154 |
+
# # Create aggregated df
|
155 |
+
# aggregated_df = aggregate_methods(detailed_df)
|
156 |
|
157 |
+
# # Create intervention-averaged df
|
158 |
+
# intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
|
159 |
|
160 |
# print("Transformed columns:", detailed_df.columns.tolist())
|
161 |
|