Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
a100ebc
1
Parent(s):
0e725d0
debug
Browse files- caulsal_metric.py +243 -0
- src/about.py +4 -4
- src/display/utils.py +16 -18
- src/leaderboard/read_evals.py +54 -47
- src/populate.py +55 -8
caulsal_metric.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from typing import List, Dict, Any, Tuple
|
6 |
+
from collections import defaultdict
|
7 |
+
|
8 |
+
def average_counterfactuals(json_files: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
9 |
+
"""
|
10 |
+
Averages scores across counterfactuals for each layer.
|
11 |
+
"""
|
12 |
+
processed_jsons = []
|
13 |
+
|
14 |
+
for json_file in json_files:
|
15 |
+
new_json = {
|
16 |
+
'method_name': json_file['method_name'],
|
17 |
+
'results': []
|
18 |
+
}
|
19 |
+
|
20 |
+
for result in json_file['results']:
|
21 |
+
new_result = {
|
22 |
+
'model_id': result['model_id'],
|
23 |
+
'task_scores': {}
|
24 |
+
}
|
25 |
+
|
26 |
+
for task, scores in result['task_scores'].items():
|
27 |
+
new_scores = []
|
28 |
+
|
29 |
+
for layer_data in scores:
|
30 |
+
new_layer_data = {
|
31 |
+
'layer': layer_data['layer'],
|
32 |
+
'layer_scores': []
|
33 |
+
}
|
34 |
+
|
35 |
+
for intervention_data in layer_data['layer_scores']:
|
36 |
+
avg_score = np.mean([cf['score'] for cf in intervention_data['counterfactual_scores']])
|
37 |
+
if np.isnan(avg_score):
|
38 |
+
avg_score = 0.0
|
39 |
+
new_layer_data['layer_scores'].append({
|
40 |
+
'intervention': intervention_data['intervention'],
|
41 |
+
'average_score': avg_score
|
42 |
+
})
|
43 |
+
|
44 |
+
new_scores.append(new_layer_data)
|
45 |
+
|
46 |
+
new_result['task_scores'][task] = new_scores
|
47 |
+
|
48 |
+
new_json['results'].append(new_result)
|
49 |
+
|
50 |
+
processed_jsons.append(new_json)
|
51 |
+
|
52 |
+
return processed_jsons
|
53 |
+
|
54 |
+
def find_layer_averages(json_files: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
55 |
+
"""
|
56 |
+
Averages scores across layers for each intervention.
|
57 |
+
"""
|
58 |
+
processed_jsons = []
|
59 |
+
|
60 |
+
for json_file in json_files:
|
61 |
+
new_json = {
|
62 |
+
'method_name': json_file['method_name'],
|
63 |
+
'results': []
|
64 |
+
}
|
65 |
+
|
66 |
+
for result in json_file['results']:
|
67 |
+
new_result = {
|
68 |
+
'model_id': result['model_id'],
|
69 |
+
'task_scores': {}
|
70 |
+
}
|
71 |
+
|
72 |
+
for task, scores in result['task_scores'].items():
|
73 |
+
# Group by intervention first
|
74 |
+
intervention_scores = defaultdict(list)
|
75 |
+
for layer_data in scores:
|
76 |
+
for intervention_data in layer_data['layer_scores']:
|
77 |
+
intervention_key = '_'.join(intervention_data['intervention'])
|
78 |
+
intervention_scores[intervention_key].append(intervention_data['average_score'])
|
79 |
+
|
80 |
+
# Average across layers for each intervention
|
81 |
+
new_result['task_scores'][task] = [
|
82 |
+
{
|
83 |
+
'intervention': intervention.split('_'),
|
84 |
+
'average_score': np.mean(layer_scores) if layer_scores else 0.0
|
85 |
+
}
|
86 |
+
for intervention, layer_scores in intervention_scores.items()
|
87 |
+
]
|
88 |
+
|
89 |
+
new_json['results'].append(new_result)
|
90 |
+
|
91 |
+
processed_jsons.append(new_json)
|
92 |
+
|
93 |
+
return processed_jsons
|
94 |
+
|
95 |
+
def create_summary_dataframe(json_files: List[Dict[str, Any]]) -> pd.DataFrame:
|
96 |
+
"""
|
97 |
+
Creates a summary DataFrame with methods as rows and MODEL_TASK_INTERVENTION as columns.
|
98 |
+
Handles duplicate method names by adding a counter suffix.
|
99 |
+
"""
|
100 |
+
data = {}
|
101 |
+
method_counters = defaultdict(int)
|
102 |
+
|
103 |
+
for json_file in json_files:
|
104 |
+
method_name = json_file['method_name']
|
105 |
+
# Increment counter for this method name
|
106 |
+
method_counters[method_name] += 1
|
107 |
+
|
108 |
+
# If this is a duplicate method name, append a counter
|
109 |
+
unique_method_name = f"{method_name}_{method_counters[method_name]}"
|
110 |
+
|
111 |
+
method_scores = []
|
112 |
+
column_names = []
|
113 |
+
|
114 |
+
for result in json_file['results']:
|
115 |
+
model = result['model_id']
|
116 |
+
for task, scores in result['task_scores'].items():
|
117 |
+
for score_data in scores:
|
118 |
+
intervention = '_'.join(score_data['intervention'])
|
119 |
+
column = f"{model}_{task}_{intervention}"
|
120 |
+
score = f"{score_data['average_score']:.3f}"
|
121 |
+
method_scores.append((column, score))
|
122 |
+
|
123 |
+
# Sort by column names for consistency
|
124 |
+
method_scores.sort(key=lambda x: x[0])
|
125 |
+
scores_only = [float(score) for _, score in method_scores]
|
126 |
+
avg_score = np.mean(scores_only)
|
127 |
+
|
128 |
+
# Add average as first column
|
129 |
+
data[unique_method_name] = {
|
130 |
+
**{col: score for col, score in method_scores}
|
131 |
+
}
|
132 |
+
|
133 |
+
df = pd.DataFrame.from_dict(data, orient='index')
|
134 |
+
|
135 |
+
|
136 |
+
return df
|
137 |
+
|
138 |
+
def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
|
139 |
+
"""
|
140 |
+
Aggregates rows with the same base method name by taking the max value for each column.
|
141 |
+
"""
|
142 |
+
# Create a copy of the DataFrame
|
143 |
+
df_copy = df.copy()
|
144 |
+
|
145 |
+
# Extract base method names (remove _2, _3, etc. suffixes)
|
146 |
+
base_methods = [name.split('_')[0] if '_' in name and name.split('_')[-1].isdigit()
|
147 |
+
else name for name in df_copy.index]
|
148 |
+
df_copy.index = base_methods
|
149 |
+
|
150 |
+
# Convert scores to numeric values
|
151 |
+
def extract_score(score_str):
|
152 |
+
if isinstance(score_str, str):
|
153 |
+
return float(score_str)
|
154 |
+
return 0.0
|
155 |
+
|
156 |
+
numeric_df = df_copy.applymap(extract_score)
|
157 |
+
|
158 |
+
# Group by base method name and take the mean
|
159 |
+
aggregated_df = numeric_df.groupby(level=0).max().round(3)
|
160 |
+
|
161 |
+
# Convert back to string format
|
162 |
+
aggregated_df = aggregated_df.applymap(lambda x: f"{x:.3f}")
|
163 |
+
|
164 |
+
return aggregated_df
|
165 |
+
|
166 |
+
def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
|
167 |
+
"""
|
168 |
+
Creates a DataFrame where columns are model_task and cells are averaged over interventions.
|
169 |
+
"""
|
170 |
+
# Create a copy of the DataFrame
|
171 |
+
df_copy = df.copy()
|
172 |
+
|
173 |
+
# Remove the Average column if it exists
|
174 |
+
if 'Average' in df_copy.columns:
|
175 |
+
df_copy = df_copy.drop('Average', axis=1)
|
176 |
+
|
177 |
+
# Function to extract score value from string
|
178 |
+
def extract_score(score_str):
|
179 |
+
if isinstance(score_str, str):
|
180 |
+
return float(score_str.split()[0])
|
181 |
+
return 0.0
|
182 |
+
|
183 |
+
# Convert all scores to numeric values
|
184 |
+
numeric_df = df_copy.applymap(extract_score)
|
185 |
+
|
186 |
+
# Group columns by model_task
|
187 |
+
model_task_groups = {}
|
188 |
+
for col in numeric_df.columns:
|
189 |
+
model_task = '_'.join(col.split('_')[:2]) # Get model_task part
|
190 |
+
if model_task not in model_task_groups:
|
191 |
+
model_task_groups[model_task] = []
|
192 |
+
model_task_groups[model_task].append(col)
|
193 |
+
|
194 |
+
# Create new DataFrame with averaged intervention scores
|
195 |
+
averaged_df = pd.DataFrame({
|
196 |
+
model_task: numeric_df[cols].mean(axis=1).round(3)
|
197 |
+
for model_task, cols in model_task_groups.items()
|
198 |
+
})
|
199 |
+
|
200 |
+
# Add overall average column
|
201 |
+
averaged_df['Average'] = averaged_df.mean(axis=1).round(3)
|
202 |
+
|
203 |
+
# Sort by Average column
|
204 |
+
averaged_df = averaged_df.sort_values('Average', ascending=False)
|
205 |
+
|
206 |
+
return averaged_df
|
207 |
+
|
208 |
+
def process_json_folder(folder_path: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
209 |
+
"""
|
210 |
+
Processes all JSON files in a folder and returns three DataFrames:
|
211 |
+
1. Detailed DataFrame showing all results including duplicates (with layer-averaged scores)
|
212 |
+
2. Aggregated DataFrame showing average scores for each base method
|
213 |
+
3. Intervention-averaged DataFrame showing means across interventions
|
214 |
+
"""
|
215 |
+
json_files = []
|
216 |
+
|
217 |
+
# Read all JSON files
|
218 |
+
for filename in os.listdir(folder_path):
|
219 |
+
if filename.endswith('.json'):
|
220 |
+
with open(os.path.join(folder_path, filename), 'r') as f:
|
221 |
+
json_files.append(json.load(f))
|
222 |
+
|
223 |
+
# Process the files through each step
|
224 |
+
averaged_cf = average_counterfactuals(json_files)
|
225 |
+
layer_averaged = find_layer_averages(averaged_cf)
|
226 |
+
detailed_df = create_summary_dataframe(layer_averaged)
|
227 |
+
aggregated_df = aggregate_methods(detailed_df)
|
228 |
+
intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
|
229 |
+
|
230 |
+
return detailed_df, aggregated_df, intervention_averaged_df
|
231 |
+
|
232 |
+
# Example usage:
|
233 |
+
if __name__ == "__main__":
|
234 |
+
# Replace with your folder path
|
235 |
+
folder_path = "./json_files"
|
236 |
+
detailed_df, aggregated_df, intervention_averaged_df = process_json_folder(folder_path)
|
237 |
+
|
238 |
+
print("Detailed Results (including duplicates):")
|
239 |
+
print(detailed_df)
|
240 |
+
print("\nAggregated Results (max scores per method):")
|
241 |
+
print(aggregated_df)
|
242 |
+
print("\nIntervention-Averaged Results:")
|
243 |
+
print(intervention_averaged_df)
|
src/about.py
CHANGED
@@ -51,19 +51,19 @@ class TaskMIB_Causalgraph:
|
|
51 |
layers: list[str] # 0-31
|
52 |
col_name: str # display name in leaderboard
|
53 |
interventions: list[str] # output_token, output_location
|
54 |
-
counterfactuals: list[str] # symbol_counterfactual,
|
55 |
-
metrics: list[str] # score
|
56 |
|
57 |
class TasksMib_Causalgraph(Enum):
|
58 |
task0 = TaskMIB_Causalgraph(
|
59 |
"MCQA",
|
60 |
["LlamaForCausalLM"],
|
61 |
-
[str(i) for i in range(32)],
|
62 |
"mcqa",
|
63 |
["output_token", "output_location"],
|
64 |
["symbol_counterfactual", "randomLetter_counterfactual",
|
65 |
"answerPosition_counterfactual", "answerPosition_symbol_counterfactual"],
|
66 |
-
["score"]
|
67 |
)
|
68 |
|
69 |
|
|
|
51 |
layers: list[str] # 0-31
|
52 |
col_name: str # display name in leaderboard
|
53 |
interventions: list[str] # output_token, output_location
|
54 |
+
counterfactuals: list[str] # symbol_counterfactual, etc.
|
55 |
+
metrics: list[str] # score
|
56 |
|
57 |
class TasksMib_Causalgraph(Enum):
|
58 |
task0 = TaskMIB_Causalgraph(
|
59 |
"MCQA",
|
60 |
["LlamaForCausalLM"],
|
61 |
+
[str(i) for i in range(32)],
|
62 |
"mcqa",
|
63 |
["output_token", "output_location"],
|
64 |
["symbol_counterfactual", "randomLetter_counterfactual",
|
65 |
"answerPosition_counterfactual", "answerPosition_symbol_counterfactual"],
|
66 |
+
["score"]
|
67 |
)
|
68 |
|
69 |
|
src/display/utils.py
CHANGED
@@ -98,38 +98,36 @@ COLS_MIB_CAUSALGRAPH = []
|
|
98 |
BENCHMARK_COLS_MIB_CAUSALGRAPH = []
|
99 |
|
100 |
|
|
|
|
|
|
|
|
|
101 |
# Initialize the MIB causal graph columns
|
102 |
auto_eval_column_dict_mib_causalgraph = []
|
103 |
|
104 |
# Method name column
|
105 |
auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
|
106 |
|
107 |
-
# For each
|
108 |
for task in TasksMib_Causalgraph:
|
109 |
for model in task.value.models:
|
110 |
-
for
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
ColumnContent(col_name, "number", True)
|
120 |
-
])
|
121 |
-
|
122 |
-
# Create the dataclass for MIB causal graph columns
|
123 |
AutoEvalColumn_mib_causalgraph = make_dataclass("AutoEvalColumn_mib_causalgraph", auto_eval_column_dict_mib_causalgraph, frozen=True)
|
124 |
|
125 |
# Column selection for display
|
126 |
COLS_MIB_CAUSALGRAPH = [c.name for c in fields(AutoEvalColumn_mib_causalgraph) if not c.hidden]
|
127 |
-
BENCHMARK_COLS_MIB_CAUSALGRAPH = [f"
|
128 |
for task in TasksMib_Causalgraph
|
129 |
for model in task.value.models
|
130 |
-
for
|
131 |
-
for intervention in task.value.interventions
|
132 |
-
for counterfactual in task.value.counterfactuals]
|
133 |
|
134 |
|
135 |
|
|
|
98 |
BENCHMARK_COLS_MIB_CAUSALGRAPH = []
|
99 |
|
100 |
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
# Initialize the MIB causal graph columns
|
106 |
auto_eval_column_dict_mib_causalgraph = []
|
107 |
|
108 |
# Method name column
|
109 |
auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
|
110 |
|
111 |
+
# For each model-task-intervention combination
|
112 |
for task in TasksMib_Causalgraph:
|
113 |
for model in task.value.models:
|
114 |
+
for intervention in task.value.interventions:
|
115 |
+
col_name = f"{model}_{task.value.benchmark}_{intervention}".lower()
|
116 |
+
auto_eval_column_dict_mib_causalgraph.append([
|
117 |
+
col_name,
|
118 |
+
ColumnContent,
|
119 |
+
ColumnContent(col_name, "number", True)
|
120 |
+
])
|
121 |
+
|
122 |
+
# Create the dataclass
|
|
|
|
|
|
|
|
|
123 |
AutoEvalColumn_mib_causalgraph = make_dataclass("AutoEvalColumn_mib_causalgraph", auto_eval_column_dict_mib_causalgraph, frozen=True)
|
124 |
|
125 |
# Column selection for display
|
126 |
COLS_MIB_CAUSALGRAPH = [c.name for c in fields(AutoEvalColumn_mib_causalgraph) if not c.hidden]
|
127 |
+
BENCHMARK_COLS_MIB_CAUSALGRAPH = [f"{model}_{task.value.benchmark}_{intervention}".lower()
|
128 |
for task in TasksMib_Causalgraph
|
129 |
for model in task.value.models
|
130 |
+
for intervention in task.value.interventions]
|
|
|
|
|
131 |
|
132 |
|
133 |
|
src/leaderboard/read_evals.py
CHANGED
@@ -185,43 +185,48 @@ def get_raw_eval_results_mib_subgraph(results_path: str, requests_path: str) ->
|
|
185 |
@dataclass
|
186 |
class EvalResult_MIB_CAUSALGRAPH:
|
187 |
"""Represents one full evaluation for a method in MIB causalgraph."""
|
188 |
-
eval_name: str
|
189 |
-
method_name: str
|
190 |
-
results: Dict
|
191 |
|
192 |
def init_from_json_file(self, json_filepath):
|
193 |
"""Inits results from the method result file"""
|
194 |
with open(json_filepath) as fp:
|
195 |
data = json.load(fp)
|
196 |
-
|
197 |
method_name = data.get("method_name")
|
198 |
results = {}
|
199 |
|
200 |
-
#
|
201 |
-
for
|
202 |
-
model_id =
|
203 |
-
task_scores =
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
# Store scores for each intervention and counterfactual
|
212 |
-
for intervention_data in layer_scores:
|
213 |
-
intervention = intervention_data["intervention"][0] # e.g., "output_token"
|
214 |
-
counterfactual_scores = intervention_data["counterfactual_scores"]
|
215 |
|
216 |
-
for
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
return EvalResult_MIB_CAUSALGRAPH(
|
227 |
eval_name=method_name,
|
@@ -235,27 +240,33 @@ class EvalResult_MIB_CAUSALGRAPH:
|
|
235 |
"eval_name": self.eval_name,
|
236 |
"Method": self.method_name,
|
237 |
}
|
238 |
-
|
239 |
-
#
|
240 |
-
for model_id,
|
241 |
-
for
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
|
|
|
|
|
|
|
|
|
|
244 |
return data_dict
|
245 |
|
246 |
def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str) -> List[EvalResult_MIB_CAUSALGRAPH]:
|
247 |
-
"""
|
248 |
model_result_filepaths = []
|
249 |
|
250 |
-
print(f"results_path is {results_path}")
|
251 |
-
|
252 |
for root, dirnames, files in os.walk(results_path):
|
253 |
-
print(f"root is {root}, dirnames is {dirnames}, files is {files}")
|
254 |
-
# We should only have json files in model results
|
255 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
256 |
continue
|
257 |
|
258 |
-
# Sort the files by date - keeping original sorting logic
|
259 |
try:
|
260 |
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
261 |
except dateutil.parser._parser.ParserError:
|
@@ -264,19 +275,15 @@ def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str)
|
|
264 |
for file in files:
|
265 |
model_result_filepaths.append(os.path.join(root, file))
|
266 |
|
267 |
-
print(f"model_result_filepaths is {model_result_filepaths}")
|
268 |
-
|
269 |
eval_results = []
|
270 |
-
for
|
271 |
try:
|
272 |
-
eval_result = EvalResult_MIB_CAUSALGRAPH("", "", {})
|
273 |
-
result = eval_result.init_from_json_file(
|
274 |
-
|
275 |
-
# Verify the result can be converted to dict format
|
276 |
-
result.to_dict()
|
277 |
eval_results.append(result)
|
278 |
except Exception as e:
|
279 |
-
print(f"Error processing {
|
280 |
continue
|
281 |
|
282 |
return eval_results
|
|
|
185 |
@dataclass
|
186 |
class EvalResult_MIB_CAUSALGRAPH:
|
187 |
"""Represents one full evaluation for a method in MIB causalgraph."""
|
188 |
+
eval_name: str
|
189 |
+
method_name: str
|
190 |
+
results: Dict
|
191 |
|
192 |
def init_from_json_file(self, json_filepath):
|
193 |
"""Inits results from the method result file"""
|
194 |
with open(json_filepath) as fp:
|
195 |
data = json.load(fp)
|
196 |
+
|
197 |
method_name = data.get("method_name")
|
198 |
results = {}
|
199 |
|
200 |
+
# First average across counterfactuals
|
201 |
+
for result in data.get("results", []):
|
202 |
+
model_id = result.get("model_id")
|
203 |
+
task_scores = result.get("task_scores", {})
|
204 |
|
205 |
+
model_results = {}
|
206 |
+
for task, scores in task_scores.items():
|
207 |
+
layer_scores = []
|
208 |
+
for layer_data in scores:
|
209 |
+
layer = layer_data.get("layer")
|
210 |
+
layer_scores_data = []
|
|
|
|
|
|
|
|
|
211 |
|
212 |
+
for intervention_data in layer_data.get("layer_scores", []):
|
213 |
+
# Average across counterfactuals
|
214 |
+
avg_score = np.mean([cf['score'] for cf in intervention_data['counterfactual_scores']])
|
215 |
+
if np.isnan(avg_score):
|
216 |
+
avg_score = 0.0
|
217 |
+
layer_scores_data.append({
|
218 |
+
'intervention': intervention_data['intervention'][0],
|
219 |
+
'score': avg_score
|
220 |
+
})
|
221 |
+
|
222 |
+
layer_scores.append({
|
223 |
+
'layer': layer,
|
224 |
+
'scores': layer_scores_data
|
225 |
+
})
|
226 |
+
|
227 |
+
model_results[task] = layer_scores
|
228 |
+
|
229 |
+
results[model_id] = model_results
|
230 |
|
231 |
return EvalResult_MIB_CAUSALGRAPH(
|
232 |
eval_name=method_name,
|
|
|
240 |
"eval_name": self.eval_name,
|
241 |
"Method": self.method_name,
|
242 |
}
|
243 |
+
|
244 |
+
# Process each model's results
|
245 |
+
for model_id, model_results in self.results.items():
|
246 |
+
for task, task_scores in model_results.items():
|
247 |
+
# Calculate layer-averaged scores for each intervention
|
248 |
+
intervention_scores = defaultdict(list)
|
249 |
+
|
250 |
+
for layer_data in task_scores:
|
251 |
+
for score_data in layer_data['scores']:
|
252 |
+
intervention = score_data['intervention']
|
253 |
+
intervention_scores[intervention].append(score_data['score'])
|
254 |
|
255 |
+
# Average across layers for each intervention
|
256 |
+
for intervention, scores in intervention_scores.items():
|
257 |
+
col_name = f"{model_id}_{task}_{intervention}".lower()
|
258 |
+
data_dict[col_name] = round(np.mean(scores), 3)
|
259 |
+
|
260 |
return data_dict
|
261 |
|
262 |
def get_raw_eval_results_mib_causalgraph(results_path: str, requests_path: str) -> List[EvalResult_MIB_CAUSALGRAPH]:
|
263 |
+
"""Extract evaluation results for MIB causalgraph"""
|
264 |
model_result_filepaths = []
|
265 |
|
|
|
|
|
266 |
for root, dirnames, files in os.walk(results_path):
|
|
|
|
|
267 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
268 |
continue
|
269 |
|
|
|
270 |
try:
|
271 |
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
272 |
except dateutil.parser._parser.ParserError:
|
|
|
275 |
for file in files:
|
276 |
model_result_filepaths.append(os.path.join(root, file))
|
277 |
|
|
|
|
|
278 |
eval_results = []
|
279 |
+
for filepath in model_result_filepaths:
|
280 |
try:
|
281 |
+
eval_result = EvalResult_MIB_CAUSALGRAPH("", "", {})
|
282 |
+
result = eval_result.init_from_json_file(filepath)
|
283 |
+
result.to_dict() # Verify conversion works
|
|
|
|
|
284 |
eval_results.append(result)
|
285 |
except Exception as e:
|
286 |
+
print(f"Error processing {filepath}: {e}")
|
287 |
continue
|
288 |
|
289 |
return eval_results
|
src/populate.py
CHANGED
@@ -65,24 +65,71 @@ def get_leaderboard_df_mib_subgraph(results_path: str, requests_path: str, cols:
|
|
65 |
|
66 |
return df
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
69 |
"""Creates a dataframe from all the MIB causal graph experiment results"""
|
70 |
print(f"results_path is {results_path}, requests_path is {requests_path}")
|
71 |
raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
|
72 |
print(f"raw_data is {raw_data}")
|
73 |
|
74 |
-
# Convert each result to dict format
|
75 |
all_data_json = [v.to_dict() for v in raw_data]
|
76 |
-
|
|
|
77 |
|
78 |
-
#
|
79 |
-
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
df[numeric_cols] = df[numeric_cols].round(2)
|
84 |
|
85 |
-
return
|
|
|
86 |
|
87 |
|
88 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
65 |
|
66 |
return df
|
67 |
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
|
72 |
+
"""Aggregates rows with the same base method name by taking the max value for each column"""
|
73 |
+
df_copy = df.copy()
|
74 |
+
|
75 |
+
# Extract base method names (remove _2, _3, etc. suffixes)
|
76 |
+
base_methods = [name.split('_')[0] if '_' in name and name.split('_')[-1].isdigit()
|
77 |
+
else name for name in df_copy.index]
|
78 |
+
df_copy.index = base_methods
|
79 |
+
|
80 |
+
# Convert scores to numeric values
|
81 |
+
numeric_df = df_copy.select_dtypes(include=['float64', 'int64'])
|
82 |
+
|
83 |
+
# Group by base method name and take the max
|
84 |
+
aggregated_df = numeric_df.groupby(level=0).max().round(3)
|
85 |
+
|
86 |
+
return aggregated_df
|
87 |
+
|
88 |
+
def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
|
89 |
+
"""Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
|
90 |
+
df_copy = df.copy()
|
91 |
+
|
92 |
+
# Remove the Method column and eval_name if present
|
93 |
+
columns_to_drop = ['Method', 'eval_name']
|
94 |
+
df_copy = df_copy.drop(columns=[col for col in columns_to_drop if col in df_copy.columns])
|
95 |
+
|
96 |
+
# Group columns by model_task
|
97 |
+
model_task_groups = {}
|
98 |
+
for col in df_copy.columns:
|
99 |
+
model_task = '_'.join(col.split('_')[:2]) # Get model_task part
|
100 |
+
if model_task not in model_task_groups:
|
101 |
+
model_task_groups[model_task] = []
|
102 |
+
model_task_groups[model_task].append(col)
|
103 |
+
|
104 |
+
# Create new DataFrame with averaged intervention scores
|
105 |
+
averaged_df = pd.DataFrame({
|
106 |
+
model_task: df_copy[cols].mean(axis=1).round(3)
|
107 |
+
for model_task, cols in model_task_groups.items()
|
108 |
+
})
|
109 |
+
|
110 |
+
return averaged_df
|
111 |
+
|
112 |
+
|
113 |
def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
114 |
"""Creates a dataframe from all the MIB causal graph experiment results"""
|
115 |
print(f"results_path is {results_path}, requests_path is {requests_path}")
|
116 |
raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
|
117 |
print(f"raw_data is {raw_data}")
|
118 |
|
119 |
+
# Convert each result to dict format for detailed df
|
120 |
all_data_json = [v.to_dict() for v in raw_data]
|
121 |
+
detailed_df = pd.DataFrame.from_records(all_data_json)
|
122 |
+
print(f"detailed_df is: {detailed_df}")
|
123 |
|
124 |
+
# Create and print other views for debugging/reference
|
125 |
+
aggregated_df = aggregate_methods(detailed_df)
|
126 |
+
print(f"aggregated_df is: {aggregated_df}")
|
127 |
|
128 |
+
intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
|
129 |
+
print(f"intervention_averaged_df is: {intervention_averaged_df}")
|
|
|
130 |
|
131 |
+
# Only return detailed_df for display
|
132 |
+
return detailed_df
|
133 |
|
134 |
|
135 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|