jasonshaoshun commited on
Commit
aaed88c
·
1 Parent(s): 9bb103a
Files changed (2) hide show
  1. app.py +25 -25
  2. src/populate.py +5 -0
app.py CHANGED
@@ -592,35 +592,35 @@ def init_leaderboard_mib_subgraph(dataframe, track):
592
 
593
 
594
 
595
- def init_leaderboard_mib_causalgraph(dataframe, track):
596
- # print("Debugging column issues:")
597
- # print("\nActual DataFrame columns:")
598
- # print(dataframe.columns.tolist())
599
 
600
- # print("\nExpected columns for Leaderboard:")
601
- expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
602
- # print(expected_cols)
603
 
604
- # print("\nMissing columns:")
605
- missing_cols = [col for col in expected_cols if col not in dataframe.columns]
606
- # print(missing_cols)
607
 
608
- # print("\nSample of DataFrame content:")
609
- # print(dataframe.head().to_string())
610
 
611
- return Leaderboard(
612
- value=dataframe,
613
- datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
614
- select_columns=SelectColumns(
615
- default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default],
616
- cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden],
617
- label="Select Columns to Display:",
618
- ),
619
- search_columns=["Method"],
620
- hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden],
621
- bool_checkboxgroup_label="Hide models",
622
- interactive=False,
623
- )
624
 
625
  def init_leaderboard_mib_causalgraph(dataframe, track):
626
  # print("Debugging column issues:")
 
592
 
593
 
594
 
595
+ # def init_leaderboard_mib_causalgraph(dataframe, track):
596
+ # # print("Debugging column issues:")
597
+ # # print("\nActual DataFrame columns:")
598
+ # # print(dataframe.columns.tolist())
599
 
600
+ # # print("\nExpected columns for Leaderboard:")
601
+ # expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
602
+ # # print(expected_cols)
603
 
604
+ # # print("\nMissing columns:")
605
+ # missing_cols = [col for col in expected_cols if col not in dataframe.columns]
606
+ # # print(missing_cols)
607
 
608
+ # # print("\nSample of DataFrame content:")
609
+ # # print(dataframe.head().to_string())
610
 
611
+ # return Leaderboard(
612
+ # value=dataframe,
613
+ # datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
614
+ # select_columns=SelectColumns(
615
+ # default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default],
616
+ # cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden],
617
+ # label="Select Columns to Display:",
618
+ # ),
619
+ # search_columns=["Method"],
620
+ # hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden],
621
+ # bool_checkboxgroup_label="Hide models",
622
+ # interactive=False,
623
+ # )
624
 
625
  def init_leaderboard_mib_causalgraph(dataframe, track):
626
  # print("Debugging column issues:")
src/populate.py CHANGED
@@ -84,6 +84,7 @@ def get_leaderboard_df_mib_subgraph(results_path: str, requests_path: str, cols:
84
  # aggregated_df = numeric_df.groupby(level=0).max().round(3)
85
 
86
  # return aggregated_df
 
87
  def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
88
  """Aggregates rows with the same base method name by taking the max value for each column"""
89
  df_copy = df.copy()
@@ -272,6 +273,10 @@ def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, co
272
  intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
273
 
274
  # print("Transformed columns:", detailed_df.columns.tolist())
 
 
 
 
275
 
276
  return detailed_df, aggregated_df, intervention_averaged_df
277
 
 
84
  # aggregated_df = numeric_df.groupby(level=0).max().round(3)
85
 
86
  # return aggregated_df
87
+
88
  def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
89
  """Aggregates rows with the same base method name by taking the max value for each column"""
90
  df_copy = df.copy()
 
273
  intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
274
 
275
  # print("Transformed columns:", detailed_df.columns.tolist())
276
+
277
+ print(f"Columns in detailed_df: {detailed_df.columns.tolist()}")
278
+ print(f"Columns in aggregated_df: {aggregated_df.columns.tolist()}")
279
+ print(f"Columns in intervention_averaged_df: {intervention_averaged_df.columns.tolist()}")
280
 
281
  return detailed_df, aggregated_df, intervention_averaged_df
282