Aaron Mueller commited on
Commit
c4686cc
·
1 Parent(s): 11e2149

fix nan averages

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -476,15 +476,19 @@ def update_leaderboard(dataframe: pd.DataFrame, selected_task_substrings: List[s
476
  return df_transformed
477
 
478
  if show_average:
479
- numeric_df = filtered_dataframe.select_dtypes(include=[np.number])
480
- means = numeric_df.mean(axis=1, skipna=False)
481
- # means = filtered_dataframe.replace("-", float("nan")).mean(axis=1, skipna=False)
482
  s_filtered_dataframe = _transform_floats(filtered_dataframe)
483
- numeric_s_df = s_filtered_dataframe.select_dtypes(include=[np.number])
484
- # s_means = s_filtered_dataframe.replace("-", float("nan")).mean(axis=1, skipna=False)
485
- s_means = numeric_s_df.mean(axis=1, skipna=False)
486
- filtered_dataframe.loc[:, "Average"] = np.where(filtered_dataframe.eq("-").any(axis=1), "-", means.round(2))
487
- filtered_dataframe.loc[:, "Score"] = np.where(filtered_dataframe.eq("-").any(axis=1), "-", s_means.round(2))
 
 
 
 
488
  filtered_dataframe = filtered_dataframe.sort_values(by=["Average"], ascending=False, na_position='last')
489
 
490
  return filtered_dataframe
 
476
  return df_transformed
477
 
478
  if show_average:
479
+ numeric_data = filtered_dataframe.replace("-", np.nan)
480
+ means = numeric_data.mean(axis=1, skipna=False)
481
+
482
  s_filtered_dataframe = _transform_floats(filtered_dataframe)
483
+ s_numeric_data = s_filtered_dataframe.replace("-", np.nan)
484
+ s_means = s_numeric_data.mean(axis=1, skipna=False)
485
+
486
+ # Set Average and Score columns
487
+ # Use isna() to check for NaN values (which occur when any cell in the row was "-")
488
+ filtered_dataframe.loc[:, "Average"] = np.where(means.isna(), "-", means.round(2))
489
+ filtered_dataframe.loc[:, "Score"] = np.where(s_means.isna(), "-", s_means.round(2))
490
+
491
+ # Sort by Average
492
  filtered_dataframe = filtered_dataframe.sort_values(by=["Average"], ascending=False, na_position='last')
493
 
494
  return filtered_dataframe