Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
c50d688
1
Parent(s):
7d21286
debug
Browse files
app.py
CHANGED
@@ -454,68 +454,59 @@ from src.about import TasksMib_Subgraph
|
|
454 |
|
455 |
|
456 |
|
457 |
-
|
458 |
def init_leaderboard_mib_subgraph(dataframe, track):
|
459 |
-
"""Initialize the subgraph leaderboard with
|
460 |
if dataframe is None or dataframe.empty:
|
461 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
462 |
-
|
463 |
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
464 |
|
465 |
-
#
|
466 |
-
|
467 |
-
print("\nBenchmarks from enum:", benchmarks)
|
468 |
|
469 |
-
#
|
470 |
-
models = list(set(
|
471 |
-
model # Get each model
|
472 |
-
for task in TasksMib_Subgraph # For each task
|
473 |
-
for model in task.value.models # Get all its models
|
474 |
-
))
|
475 |
-
print("\nModels from enum:", models)
|
476 |
-
|
477 |
-
# Create benchmark selections - map each benchmark to its columns
|
478 |
-
benchmark_selections = {}
|
479 |
for task in TasksMib_Subgraph:
|
480 |
benchmark = task.value.benchmark
|
481 |
-
#
|
482 |
-
|
483 |
f"{benchmark}_{model}"
|
484 |
for model in task.value.models
|
485 |
if f"{benchmark}_{model}" in dataframe.columns
|
486 |
]
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
|
|
|
|
|
|
|
|
495 |
f"{task.value.benchmark}_{model}"
|
496 |
for task in TasksMib_Subgraph
|
497 |
if model in task.value.models
|
498 |
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
499 |
]
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
**model_selections
|
507 |
-
}
|
508 |
-
|
509 |
-
# Get the final selection options
|
510 |
-
selection_options = list(selection_groups.keys())
|
511 |
-
print("\nFinal selection options:", selection_options)
|
512 |
|
|
|
|
|
|
|
|
|
513 |
return Leaderboard(
|
514 |
value=dataframe,
|
515 |
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
516 |
select_columns=SelectColumns(
|
517 |
-
default_selection=
|
518 |
-
label="
|
519 |
),
|
520 |
search_columns=["Method"],
|
521 |
hide_columns=[],
|
@@ -526,6 +517,9 @@ def init_leaderboard_mib_subgraph(dataframe, track):
|
|
526 |
|
527 |
|
528 |
|
|
|
|
|
|
|
529 |
def init_leaderboard_mib_causalgraph(dataframe, track):
|
530 |
# print("Debugging column issues:")
|
531 |
# print("\nActual DataFrame columns:")
|
|
|
454 |
|
455 |
|
456 |
|
|
|
457 |
def init_leaderboard_mib_subgraph(dataframe, track):
|
458 |
+
"""Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
459 |
if dataframe is None or dataframe.empty:
|
460 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
461 |
+
|
462 |
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
463 |
|
464 |
+
# Create groups of columns by benchmark
|
465 |
+
benchmark_groups = []
|
|
|
466 |
|
467 |
+
# For each benchmark in our TasksMib_Subgraph enum...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
for task in TasksMib_Subgraph:
|
469 |
benchmark = task.value.benchmark
|
470 |
+
# Get all valid columns for this benchmark's models
|
471 |
+
benchmark_cols = [
|
472 |
f"{benchmark}_{model}"
|
473 |
for model in task.value.models
|
474 |
if f"{benchmark}_{model}" in dataframe.columns
|
475 |
]
|
476 |
+
if benchmark_cols: # Only add if we have valid columns
|
477 |
+
benchmark_groups.append(benchmark_cols)
|
478 |
+
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
479 |
+
|
480 |
+
# Create model groups as well
|
481 |
+
model_groups = []
|
482 |
+
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
483 |
+
|
484 |
+
# For each unique model...
|
485 |
+
for model in all_models:
|
486 |
+
# Get all valid columns for this model across benchmarks
|
487 |
+
model_cols = [
|
488 |
f"{task.value.benchmark}_{model}"
|
489 |
for task in TasksMib_Subgraph
|
490 |
if model in task.value.models
|
491 |
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
492 |
]
|
493 |
+
if model_cols: # Only add if we have valid columns
|
494 |
+
model_groups.append(model_cols)
|
495 |
+
print(f"\nModel group for {model}:", model_cols)
|
496 |
+
|
497 |
+
# Combine all groups
|
498 |
+
all_groups = benchmark_groups + model_groups
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
+
# Flatten groups for default selection (show everything initially)
|
501 |
+
all_columns = [col for group in all_groups for col in group]
|
502 |
+
print("\nAll available columns:", all_columns)
|
503 |
+
|
504 |
return Leaderboard(
|
505 |
value=dataframe,
|
506 |
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
507 |
select_columns=SelectColumns(
|
508 |
+
default_selection=all_columns, # Show all columns initially
|
509 |
+
label="Select Results:"
|
510 |
),
|
511 |
search_columns=["Method"],
|
512 |
hide_columns=[],
|
|
|
517 |
|
518 |
|
519 |
|
520 |
+
|
521 |
+
|
522 |
+
|
523 |
def init_leaderboard_mib_causalgraph(dataframe, track):
|
524 |
# print("Debugging column issues:")
|
525 |
# print("\nActual DataFrame columns:")
|