shunshao commited on
Commit
c757005
·
verified ·
1 Parent(s): ad60993

Update src/populate.py

Browse files
Files changed (1) hide show
  1. src/populate.py +2 -33
src/populate.py CHANGED
@@ -97,45 +97,14 @@ def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
97
 
98
 
99
  def get_leaderboard_df_mib_causalgraph(results_path: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
100
- # print(f"results_path is {results_path}, requests_path is {requests_path}")
101
-
102
- detailed_df, aggregated_df, intervention_averaged_df = get_raw_eval_results_mib_causalgraph(results_path)
103
 
104
- # all_data_json = [v.to_dict() for v in raw_detailed_df]
105
- # detailed_df = pd.DataFrame.from_records(all_data_json)
106
 
107
- # all_data_json = [v.to_dict() for v in raw_aggregated_df]
108
- # aggregated_df = pd.DataFrame.from_records(all_data_json)
109
-
110
- # all_data_json = [v.to_dict() for v in raw_intervention_averaged_df]
111
- # intervention_averaged_df = pd.DataFrame.from_records(all_data_json)
112
-
113
- # # Rename columns to match schema
114
- # column_mapping = {}
115
- # for col in detailed_df.columns:
116
- # if col in ['eval_name', 'Method']:
117
- # continue
118
- # # Ensure consistent casing for the column names
119
- # new_col = col.replace('Qwen2ForCausalLM', 'qwen2forcausallm') \
120
- # .replace('Gemma2ForCausalLM', 'gemma2forcausallm') \
121
- # .replace('LlamaForCausalLM', 'llamaforcausallm')
122
- # column_mapping[col] = new_col
123
-
124
- # detailed_df = detailed_df.rename(columns=column_mapping)
125
-
126
- # # Create aggregated df
127
- # aggregated_df = aggregate_methods(detailed_df)
128
-
129
- # # Create intervention-averaged df
130
- # intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
131
-
132
- # print("Transformed columns:", detailed_df.columns.tolist())
133
 
134
- print(f"Columns in detailed_df: {detailed_df.columns.tolist()}")
135
  print(f"Columns in aggregated_df: {aggregated_df.columns.tolist()}")
136
  print(f"Columns in intervention_averaged_df: {intervention_averaged_df.columns.tolist()}")
137
 
138
- return detailed_df, aggregated_df, intervention_averaged_df
139
 
140
 
141
  def get_evaluation_queue_df(save_path: str, cols: list, track: str) -> list[pd.DataFrame]:
 
97
 
98
 
99
  def get_leaderboard_df_mib_causalgraph(results_path: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
 
 
 
100
 
 
 
101
 
102
+ aggregated_df, intervention_averaged_df = get_raw_eval_results_mib_causalgraph(results_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
 
104
  print(f"Columns in aggregated_df: {aggregated_df.columns.tolist()}")
105
  print(f"Columns in intervention_averaged_df: {intervention_averaged_df.columns.tolist()}")
106
 
107
+ return aggregated_df, intervention_averaged_df
108
 
109
 
110
  def get_evaluation_queue_df(save_path: str, cols: list, track: str) -> list[pd.DataFrame]: