Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
ef71549
1
Parent(s):
dd7b655
debug
Browse files- app.py +223 -71
- custom-select-columns.py +345 -0
app.py
CHANGED
@@ -128,58 +128,122 @@ from src.about import TasksMib_Subgraph
|
|
128 |
|
129 |
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
132 |
-
# """Initialize the subgraph leaderboard with
|
133 |
# if dataframe is None or dataframe.empty:
|
134 |
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
135 |
|
136 |
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
137 |
|
138 |
-
# #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# benchmark_groups = []
|
140 |
-
|
141 |
-
# # For each benchmark in our TasksMib_Subgraph enum...
|
142 |
# for task in TasksMib_Subgraph:
|
143 |
# benchmark = task.value.benchmark
|
144 |
-
# # Get all valid columns for this benchmark's models
|
145 |
# benchmark_cols = [
|
146 |
-
# f"{benchmark}_{model}"
|
147 |
# for model in task.value.models
|
148 |
# if f"{benchmark}_{model}" in dataframe.columns
|
149 |
# ]
|
150 |
-
# if benchmark_cols:
|
151 |
# benchmark_groups.append(benchmark_cols)
|
152 |
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
153 |
|
154 |
-
# #
|
155 |
# model_groups = []
|
156 |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
157 |
|
158 |
-
# # For each unique model...
|
159 |
# for model in all_models:
|
160 |
-
# # Get all valid columns for this model across benchmarks
|
161 |
# model_cols = [
|
162 |
-
# f"{task.value.benchmark}_{model}"
|
163 |
# for task in TasksMib_Subgraph
|
164 |
# if model in task.value.models
|
165 |
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
166 |
# ]
|
167 |
-
# if model_cols:
|
168 |
# model_groups.append(model_cols)
|
169 |
# print(f"\nModel group for {model}:", model_cols)
|
170 |
|
171 |
-
# # Combine all groups
|
172 |
# all_groups = benchmark_groups + model_groups
|
173 |
-
|
174 |
-
# # Flatten groups for default selection (show everything initially)
|
175 |
# all_columns = [col for group in all_groups for col in group]
|
176 |
-
|
|
|
|
|
177 |
|
178 |
# return Leaderboard(
|
179 |
-
# value=
|
180 |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
181 |
# select_columns=SelectColumns(
|
182 |
-
# default_selection=all_columns, #
|
183 |
# label="Select Results:"
|
184 |
# ),
|
185 |
# search_columns=["Method"],
|
@@ -188,71 +252,159 @@ from src.about import TasksMib_Subgraph
|
|
188 |
# )
|
189 |
|
190 |
|
191 |
-
def init_leaderboard_mib_subgraph(dataframe, track):
|
192 |
-
"""Initialize the subgraph leaderboard with display names for better readability."""
|
193 |
-
if dataframe is None or dataframe.empty:
|
194 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
195 |
|
196 |
-
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
197 |
-
|
198 |
-
# First, create our display name mapping
|
199 |
-
# This is like creating a translation dictionary between internal names and display names
|
200 |
-
display_mapping = {}
|
201 |
-
for task in TasksMib_Subgraph:
|
202 |
-
for model in task.value.models:
|
203 |
-
field_name = f"{task.value.benchmark}_{model}"
|
204 |
-
display_name = f"{task.value.benchmark}({model})"
|
205 |
-
display_mapping[field_name] = display_name
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
#
|
221 |
-
|
222 |
-
|
|
|
|
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
|
235 |
-
# Combine all groups using display names
|
236 |
-
all_groups = benchmark_groups + model_groups
|
237 |
-
all_columns = [col for group in all_groups for col in group]
|
238 |
|
239 |
-
#
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
-
return Leaderboard(
|
243 |
-
value=renamed_df,
|
244 |
-
datatype=[c.type for c in fields(
|
245 |
-
select_columns=
|
246 |
-
default_selection=all_columns, # Now contains display names
|
247 |
-
label="Select Results:"
|
248 |
-
),
|
249 |
search_columns=["Method"],
|
250 |
hide_columns=[],
|
251 |
-
interactive=False
|
252 |
)
|
253 |
|
254 |
|
255 |
-
|
256 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
257 |
# """Initialize the subgraph leaderboard with group-based column selection."""
|
258 |
# if dataframe is None or dataframe.empty:
|
|
|
128 |
|
129 |
|
130 |
|
131 |
+
def init_leaderboard_mib_subgraph(dataframe, track):
|
132 |
+
"""Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
133 |
+
if dataframe is None or dataframe.empty:
|
134 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
135 |
+
|
136 |
+
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
137 |
+
|
138 |
+
# Create groups of columns by benchmark
|
139 |
+
benchmark_groups = []
|
140 |
+
|
141 |
+
# For each benchmark in our TasksMib_Subgraph enum...
|
142 |
+
for task in TasksMib_Subgraph:
|
143 |
+
benchmark = task.value.benchmark
|
144 |
+
# Get all valid columns for this benchmark's models
|
145 |
+
benchmark_cols = [
|
146 |
+
f"{benchmark}_{model}"
|
147 |
+
for model in task.value.models
|
148 |
+
if f"{benchmark}_{model}" in dataframe.columns
|
149 |
+
]
|
150 |
+
if benchmark_cols: # Only add if we have valid columns
|
151 |
+
benchmark_groups.append(benchmark_cols)
|
152 |
+
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
153 |
+
|
154 |
+
# Create model groups as well
|
155 |
+
model_groups = []
|
156 |
+
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
157 |
+
|
158 |
+
# For each unique model...
|
159 |
+
for model in all_models:
|
160 |
+
# Get all valid columns for this model across benchmarks
|
161 |
+
model_cols = [
|
162 |
+
f"{task.value.benchmark}_{model}"
|
163 |
+
for task in TasksMib_Subgraph
|
164 |
+
if model in task.value.models
|
165 |
+
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
166 |
+
]
|
167 |
+
if model_cols: # Only add if we have valid columns
|
168 |
+
model_groups.append(model_cols)
|
169 |
+
print(f"\nModel group for {model}:", model_cols)
|
170 |
+
|
171 |
+
# Combine all groups
|
172 |
+
all_groups = benchmark_groups + model_groups
|
173 |
+
|
174 |
+
# Flatten groups for default selection (show everything initially)
|
175 |
+
all_columns = [col for group in all_groups for col in group]
|
176 |
+
print("\nAll available columns:", all_columns)
|
177 |
+
|
178 |
+
return Leaderboard(
|
179 |
+
value=dataframe,
|
180 |
+
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
181 |
+
select_columns=SelectColumns(
|
182 |
+
default_selection=all_columns, # Show all columns initially
|
183 |
+
label="Select Results:"
|
184 |
+
),
|
185 |
+
search_columns=["Method"],
|
186 |
+
hide_columns=[],
|
187 |
+
interactive=False,
|
188 |
+
)
|
189 |
+
|
190 |
+
|
191 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
192 |
+
# """Initialize the subgraph leaderboard with display names for better readability."""
|
193 |
# if dataframe is None or dataframe.empty:
|
194 |
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
195 |
|
196 |
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
197 |
|
198 |
+
# # First, create our display name mapping
|
199 |
+
# # This is like creating a translation dictionary between internal names and display names
|
200 |
+
# display_mapping = {}
|
201 |
+
# for task in TasksMib_Subgraph:
|
202 |
+
# for model in task.value.models:
|
203 |
+
# field_name = f"{task.value.benchmark}_{model}"
|
204 |
+
# display_name = f"{task.value.benchmark}({model})"
|
205 |
+
# display_mapping[field_name] = display_name
|
206 |
+
|
207 |
+
# # Now when creating benchmark groups, we'll use display names
|
208 |
# benchmark_groups = []
|
|
|
|
|
209 |
# for task in TasksMib_Subgraph:
|
210 |
# benchmark = task.value.benchmark
|
|
|
211 |
# benchmark_cols = [
|
212 |
+
# display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping
|
213 |
# for model in task.value.models
|
214 |
# if f"{benchmark}_{model}" in dataframe.columns
|
215 |
# ]
|
216 |
+
# if benchmark_cols:
|
217 |
# benchmark_groups.append(benchmark_cols)
|
218 |
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
219 |
|
220 |
+
# # Similarly for model groups
|
221 |
# model_groups = []
|
222 |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
223 |
|
|
|
224 |
# for model in all_models:
|
|
|
225 |
# model_cols = [
|
226 |
+
# display_mapping[f"{task.value.benchmark}_{model}"] # Use display name
|
227 |
# for task in TasksMib_Subgraph
|
228 |
# if model in task.value.models
|
229 |
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
230 |
# ]
|
231 |
+
# if model_cols:
|
232 |
# model_groups.append(model_cols)
|
233 |
# print(f"\nModel group for {model}:", model_cols)
|
234 |
|
235 |
+
# # Combine all groups using display names
|
236 |
# all_groups = benchmark_groups + model_groups
|
|
|
|
|
237 |
# all_columns = [col for group in all_groups for col in group]
|
238 |
+
|
239 |
+
# # Important: We need to rename our DataFrame columns to match display names
|
240 |
+
# renamed_df = dataframe.rename(columns=display_mapping)
|
241 |
|
242 |
# return Leaderboard(
|
243 |
+
# value=renamed_df, # Use DataFrame with display names
|
244 |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
245 |
# select_columns=SelectColumns(
|
246 |
+
# default_selection=all_columns, # Now contains display names
|
247 |
# label="Select Results:"
|
248 |
# ),
|
249 |
# search_columns=["Method"],
|
|
|
252 |
# )
|
253 |
|
254 |
|
|
|
|
|
|
|
|
|
255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
+
class SmartSelectColumns(gr.SelectColumns):
|
258 |
+
"""
|
259 |
+
Enhanced SelectColumns component for Gradio Leaderboard with smart filtering and mapping capabilities.
|
260 |
+
"""
|
261 |
+
def __init__(
|
262 |
+
self,
|
263 |
+
column_filters: Optional[Dict[str, List[str]]] = None,
|
264 |
+
column_mapping: Optional[Dict[str, str]] = None,
|
265 |
+
initial_selected: Optional[List[str]] = None,
|
266 |
+
*args,
|
267 |
+
**kwargs
|
268 |
+
):
|
269 |
+
"""
|
270 |
+
Initialize SmartSelectColumns with enhanced functionality.
|
271 |
+
|
272 |
+
Args:
|
273 |
+
column_filters: Dict mapping filter names to lists of substrings to match
|
274 |
+
column_mapping: Dict mapping actual column names to display names
|
275 |
+
initial_selected: List of column names to be initially selected
|
276 |
+
*args, **kwargs: Additional arguments passed to parent SelectColumns
|
277 |
+
"""
|
278 |
+
super().__init__(*args, **kwargs)
|
279 |
+
self.column_filters = column_filters or {}
|
280 |
+
self.column_mapping = column_mapping or {}
|
281 |
+
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
|
282 |
+
self.initial_selected = initial_selected or []
|
283 |
+
|
284 |
+
def preprocess(self, x: List[str]) -> List[str]:
|
285 |
+
"""
|
286 |
+
Transform selected display names back to actual column names.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
x: List of selected display names
|
290 |
+
|
291 |
+
Returns:
|
292 |
+
List of actual column names
|
293 |
+
"""
|
294 |
+
return [self.reverse_mapping.get(col, col) for col in x]
|
295 |
+
|
296 |
+
def postprocess(self, y: List[str]) -> List[str]:
|
297 |
+
"""
|
298 |
+
Transform actual column names to display names.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
y: List of actual column names
|
302 |
+
|
303 |
+
Returns:
|
304 |
+
List of display names
|
305 |
+
"""
|
306 |
+
return [self.column_mapping.get(col, col) for col in y]
|
307 |
+
|
308 |
+
def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]:
|
309 |
+
"""
|
310 |
+
Get columns filtered by substring matches.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
df: Input DataFrame
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
Dict mapping filter names to lists of matching display names
|
317 |
+
"""
|
318 |
+
filtered_cols = {}
|
319 |
+
|
320 |
+
for filter_name, substrings in self.column_filters.items():
|
321 |
+
matching_cols = []
|
322 |
+
for col in df.columns:
|
323 |
+
if any(substr.lower() in col.lower() for substr in substrings):
|
324 |
+
display_name = self.column_mapping.get(col, col)
|
325 |
+
matching_cols.append(display_name)
|
326 |
+
filtered_cols[filter_name] = matching_cols
|
327 |
+
|
328 |
+
return filtered_cols
|
329 |
+
|
330 |
+
def update(
|
331 |
+
self,
|
332 |
+
value: Union[pd.DataFrame, Dict[str, List[str]], Any],
|
333 |
+
interactive: Optional[bool] = None
|
334 |
+
) -> Dict:
|
335 |
+
"""
|
336 |
+
Update component with new values, supporting DataFrame fields.
|
337 |
+
|
338 |
+
Args:
|
339 |
+
value: DataFrame, dict of columns, or fields object
|
340 |
+
interactive: Whether component should be interactive
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
Dict containing update configuration
|
344 |
+
"""
|
345 |
+
if isinstance(value, pd.DataFrame):
|
346 |
+
filtered_cols = self.get_filtered_columns(value)
|
347 |
+
choices = [self.column_mapping.get(col, col) for col in value.columns]
|
348 |
+
|
349 |
+
# Set initial selection if provided
|
350 |
+
value = self.initial_selected if self.initial_selected else choices
|
351 |
+
|
352 |
+
return {
|
353 |
+
"choices": choices,
|
354 |
+
"value": value,
|
355 |
+
"filtered_cols": filtered_cols,
|
356 |
+
"interactive": interactive if interactive is not None else self.interactive
|
357 |
+
}
|
358 |
+
|
359 |
+
# Handle fields object (e.g., from dataclass)
|
360 |
+
if hasattr(value, '__dataclass_fields__'):
|
361 |
+
field_names = [field.name for field in fields(value)]
|
362 |
+
choices = [self.column_mapping.get(name, name) for name in field_names]
|
363 |
+
return {
|
364 |
+
"choices": choices,
|
365 |
+
"value": self.initial_selected if self.initial_selected else choices,
|
366 |
+
"interactive": interactive if interactive is not None else self.interactive
|
367 |
+
}
|
368 |
+
|
369 |
+
return super().update(value, interactive)
|
370 |
+
|
371 |
|
372 |
+
# Define filters and mappings
|
373 |
+
filters = {
|
374 |
+
"IOI Metrics": ["ioi"],
|
375 |
+
"Performance Metrics": ["performance"]
|
376 |
+
}
|
377 |
|
378 |
+
mappings = {
|
379 |
+
"ioi_score_1": "IOI Score (Type 1)",
|
380 |
+
"ioi_score_2": "IOI Score (Type 2)",
|
381 |
+
"other_metric": "Other Metric",
|
382 |
+
"performance_1": "Performance Metric 1"
|
383 |
+
}
|
384 |
+
|
385 |
+
column_filters = filters
|
386 |
+
column_mapping = mappings
|
387 |
+
initial_columns = renamed_df
|
388 |
|
|
|
|
|
|
|
389 |
|
390 |
+
# Initialize SmartSelectColumns
|
391 |
+
smart_columns = SmartSelectColumns(
|
392 |
+
column_filters=filters,
|
393 |
+
column_mapping=mappings,
|
394 |
+
initial_selected=initial_columns,
|
395 |
+
multiselect=True
|
396 |
+
)
|
397 |
|
398 |
+
return gr.Leaderboard(
|
399 |
+
value=renamed_df,
|
400 |
+
datatype=[c.type for c in fields(column_class)],
|
401 |
+
select_columns=smart_columns,
|
|
|
|
|
|
|
402 |
search_columns=["Method"],
|
403 |
hide_columns=[],
|
404 |
+
interactive=False
|
405 |
)
|
406 |
|
407 |
|
|
|
408 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
409 |
# """Initialize the subgraph leaderboard with group-based column selection."""
|
410 |
# if dataframe is None or dataframe.empty:
|
custom-select-columns.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from typing import List, Dict, Union, Optional
|
4 |
+
|
5 |
+
class SmartSelectColumns(gr.SelectColumns):
|
6 |
+
"""
|
7 |
+
Enhanced SelectColumns component that supports substring matching and column mapping.
|
8 |
+
Inherits from gr.SelectColumns but adds additional filtering capabilities.
|
9 |
+
"""
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
*args,
|
13 |
+
column_filters: Optional[Dict[str, List[str]]] = None,
|
14 |
+
column_mapping: Optional[Dict[str, str]] = None,
|
15 |
+
**kwargs
|
16 |
+
):
|
17 |
+
"""
|
18 |
+
Initialize the SmartSelectColumns component.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
column_filters: Dict mapping filter names to lists of substrings to match
|
22 |
+
column_mapping: Dict mapping display names to actual column names
|
23 |
+
*args, **kwargs: Arguments passed to parent SelectColumns
|
24 |
+
"""
|
25 |
+
super().__init__(*args, **kwargs)
|
26 |
+
self.column_filters = column_filters or {}
|
27 |
+
self.column_mapping = column_mapping or {}
|
28 |
+
|
29 |
+
def preprocess(self, x: List[str]) -> List[str]:
|
30 |
+
"""Transform selected display names back to actual column names."""
|
31 |
+
if self.column_mapping:
|
32 |
+
reverse_mapping = {v: k for k, v in self.column_mapping.items()}
|
33 |
+
return [reverse_mapping.get(col, col) for col in x]
|
34 |
+
return x
|
35 |
+
|
36 |
+
def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]:
|
37 |
+
"""
|
38 |
+
Get columns filtered by substring matches.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
df: Input DataFrame
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
Dict mapping filter names to lists of matching columns
|
45 |
+
"""
|
46 |
+
filtered_cols = {}
|
47 |
+
|
48 |
+
for filter_name, substrings in self.column_filters.items():
|
49 |
+
matching_cols = []
|
50 |
+
for col in df.columns:
|
51 |
+
if any(substr.lower() in col.lower() for substr in substrings):
|
52 |
+
matching_cols.append(col)
|
53 |
+
filtered_cols[filter_name] = matching_cols
|
54 |
+
|
55 |
+
return filtered_cols
|
56 |
+
|
57 |
+
def update(
|
58 |
+
self,
|
59 |
+
value: Union[pd.DataFrame, Dict[str, List[str]]],
|
60 |
+
interactive: Optional[bool] = None
|
61 |
+
) -> Dict:
|
62 |
+
"""
|
63 |
+
Update the component with new values.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
value: Either a DataFrame or dict of predefined column groups
|
67 |
+
interactive: Whether the component should be interactive
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
Dict containing the update configuration
|
71 |
+
"""
|
72 |
+
if isinstance(value, pd.DataFrame):
|
73 |
+
# Get filtered column groups
|
74 |
+
filtered_cols = self.get_filtered_columns(value)
|
75 |
+
|
76 |
+
# Create display names for columns if mapping exists
|
77 |
+
choices = list(value.columns)
|
78 |
+
if self.column_mapping:
|
79 |
+
choices = [self.column_mapping.get(col, col) for col in choices]
|
80 |
+
|
81 |
+
return {
|
82 |
+
"choices": choices,
|
83 |
+
"filtered_cols": filtered_cols,
|
84 |
+
"interactive": interactive if interactive is not None else self.interactive
|
85 |
+
}
|
86 |
+
return super().update(value, interactive)
|
87 |
+
|
88 |
+
# Example usage
|
89 |
+
if __name__ == "__main__":
|
90 |
+
df = pd.DataFrame({
|
91 |
+
"ioi_score_1": [1, 2, 3],
|
92 |
+
"ioi_score_2": [4, 5, 6],
|
93 |
+
"other_metric": [7, 8, 9],
|
94 |
+
"performance_1": [10, 11, 12]
|
95 |
+
})
|
96 |
+
|
97 |
+
# Define filters and mappings
|
98 |
+
column_filters = {
|
99 |
+
"IOI Metrics": ["ioi"],
|
100 |
+
"Performance Metrics": ["performance"]
|
101 |
+
}
|
102 |
+
|
103 |
+
column_mapping = {
|
104 |
+
"ioi_score_1": "IOI Score (Type 1)",
|
105 |
+
"ioi_score_2": "IOI Score (Type 2)",
|
106 |
+
"other_metric": "Other Metric",
|
107 |
+
"performance_1": "Performance Metric 1"
|
108 |
+
}
|
109 |
+
|
110 |
+
# Create interface
|
111 |
+
with gr.Blocks() as demo:
|
112 |
+
select_cols = SmartSelectColumns(
|
113 |
+
column_filters=column_filters,
|
114 |
+
column_mapping=column_mapping,
|
115 |
+
multiselect=True
|
116 |
+
)
|
117 |
+
|
118 |
+
# Update component with DataFrame
|
119 |
+
select_cols.update(df)
|
120 |
+
|
121 |
+
demo.launch()
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
import gradio as gr
|
155 |
+
import pandas as pd
|
156 |
+
from typing import List, Dict, Union, Optional, Any
|
157 |
+
from dataclasses import fields
|
158 |
+
|
159 |
+
class SmartSelectColumns(gr.SelectColumns):
|
160 |
+
"""
|
161 |
+
Enhanced SelectColumns component for Gradio Leaderboard with smart filtering and mapping capabilities.
|
162 |
+
"""
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
column_filters: Optional[Dict[str, List[str]]] = None,
|
166 |
+
column_mapping: Optional[Dict[str, str]] = None,
|
167 |
+
initial_selected: Optional[List[str]] = None,
|
168 |
+
*args,
|
169 |
+
**kwargs
|
170 |
+
):
|
171 |
+
"""
|
172 |
+
Initialize SmartSelectColumns with enhanced functionality.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
column_filters: Dict mapping filter names to lists of substrings to match
|
176 |
+
column_mapping: Dict mapping actual column names to display names
|
177 |
+
initial_selected: List of column names to be initially selected
|
178 |
+
*args, **kwargs: Additional arguments passed to parent SelectColumns
|
179 |
+
"""
|
180 |
+
super().__init__(*args, **kwargs)
|
181 |
+
self.column_filters = column_filters or {}
|
182 |
+
self.column_mapping = column_mapping or {}
|
183 |
+
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
|
184 |
+
self.initial_selected = initial_selected or []
|
185 |
+
|
186 |
+
def preprocess(self, x: List[str]) -> List[str]:
|
187 |
+
"""
|
188 |
+
Transform selected display names back to actual column names.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
x: List of selected display names
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
List of actual column names
|
195 |
+
"""
|
196 |
+
return [self.reverse_mapping.get(col, col) for col in x]
|
197 |
+
|
198 |
+
def postprocess(self, y: List[str]) -> List[str]:
|
199 |
+
"""
|
200 |
+
Transform actual column names to display names.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
y: List of actual column names
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
List of display names
|
207 |
+
"""
|
208 |
+
return [self.column_mapping.get(col, col) for col in y]
|
209 |
+
|
210 |
+
def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]:
|
211 |
+
"""
|
212 |
+
Get columns filtered by substring matches.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
df: Input DataFrame
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
Dict mapping filter names to lists of matching display names
|
219 |
+
"""
|
220 |
+
filtered_cols = {}
|
221 |
+
|
222 |
+
for filter_name, substrings in self.column_filters.items():
|
223 |
+
matching_cols = []
|
224 |
+
for col in df.columns:
|
225 |
+
if any(substr.lower() in col.lower() for substr in substrings):
|
226 |
+
display_name = self.column_mapping.get(col, col)
|
227 |
+
matching_cols.append(display_name)
|
228 |
+
filtered_cols[filter_name] = matching_cols
|
229 |
+
|
230 |
+
return filtered_cols
|
231 |
+
|
232 |
+
def update(
|
233 |
+
self,
|
234 |
+
value: Union[pd.DataFrame, Dict[str, List[str]], Any],
|
235 |
+
interactive: Optional[bool] = None
|
236 |
+
) -> Dict:
|
237 |
+
"""
|
238 |
+
Update component with new values, supporting DataFrame fields.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
value: DataFrame, dict of columns, or fields object
|
242 |
+
interactive: Whether component should be interactive
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
Dict containing update configuration
|
246 |
+
"""
|
247 |
+
if isinstance(value, pd.DataFrame):
|
248 |
+
filtered_cols = self.get_filtered_columns(value)
|
249 |
+
choices = [self.column_mapping.get(col, col) for col in value.columns]
|
250 |
+
|
251 |
+
# Set initial selection if provided
|
252 |
+
value = self.initial_selected if self.initial_selected else choices
|
253 |
+
|
254 |
+
return {
|
255 |
+
"choices": choices,
|
256 |
+
"value": value,
|
257 |
+
"filtered_cols": filtered_cols,
|
258 |
+
"interactive": interactive if interactive is not None else self.interactive
|
259 |
+
}
|
260 |
+
|
261 |
+
# Handle fields object (e.g., from dataclass)
|
262 |
+
if hasattr(value, '__dataclass_fields__'):
|
263 |
+
field_names = [field.name for field in fields(value)]
|
264 |
+
choices = [self.column_mapping.get(name, name) for name in field_names]
|
265 |
+
return {
|
266 |
+
"choices": choices,
|
267 |
+
"value": self.initial_selected if self.initial_selected else choices,
|
268 |
+
"interactive": interactive if interactive is not None else self.interactive
|
269 |
+
}
|
270 |
+
|
271 |
+
return super().update(value, interactive)
|
272 |
+
|
273 |
+
def initialize_leaderboard(df: pd.DataFrame, column_class: Any,
|
274 |
+
filters: Dict[str, List[str]],
|
275 |
+
mappings: Dict[str, str],
|
276 |
+
initial_columns: Optional[List[str]] = None) -> gr.Leaderboard:
|
277 |
+
"""
|
278 |
+
Initialize a Gradio Leaderboard with SmartSelectColumns.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
df: Input DataFrame
|
282 |
+
column_class: Class containing column definitions (e.g., AutoEvalColumn_mib_subgraph)
|
283 |
+
filters: Column filters for substring matching
|
284 |
+
mappings: Column name mappings (actual -> display)
|
285 |
+
initial_columns: List of columns to show initially
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
Configured Leaderboard instance
|
289 |
+
"""
|
290 |
+
# Create renamed DataFrame with display names
|
291 |
+
renamed_df = df.rename(columns=mappings)
|
292 |
+
|
293 |
+
# Initialize SmartSelectColumns
|
294 |
+
smart_columns = SmartSelectColumns(
|
295 |
+
column_filters=filters,
|
296 |
+
column_mapping=mappings,
|
297 |
+
initial_selected=initial_columns,
|
298 |
+
multiselect=True
|
299 |
+
)
|
300 |
+
|
301 |
+
return gr.Leaderboard(
|
302 |
+
value=renamed_df,
|
303 |
+
datatype=[c.type for c in fields(column_class)],
|
304 |
+
select_columns=smart_columns,
|
305 |
+
search_columns=["Method"],
|
306 |
+
hide_columns=[],
|
307 |
+
interactive=False
|
308 |
+
)
|
309 |
+
|
310 |
+
# Example usage
|
311 |
+
if __name__ == "__main__":
|
312 |
+
# Sample data
|
313 |
+
df = pd.DataFrame({
|
314 |
+
"ioi_score_1": [1, 2, 3],
|
315 |
+
"ioi_score_2": [4, 5, 6],
|
316 |
+
"other_metric": [7, 8, 9],
|
317 |
+
"performance_1": [10, 11, 12],
|
318 |
+
"Method": ["A", "B", "C"]
|
319 |
+
})
|
320 |
+
|
321 |
+
# Define filters and mappings
|
322 |
+
filters = {
|
323 |
+
"IOI Metrics": ["ioi"],
|
324 |
+
"Performance Metrics": ["performance"]
|
325 |
+
}
|
326 |
+
|
327 |
+
mappings = {
|
328 |
+
"ioi_score_1": "IOI Score (Type 1)",
|
329 |
+
"ioi_score_2": "IOI Score (Type 2)",
|
330 |
+
"other_metric": "Other Metric",
|
331 |
+
"performance_1": "Performance Metric 1"
|
332 |
+
}
|
333 |
+
|
334 |
+
# Create demo interface
|
335 |
+
with gr.Blocks() as demo:
|
336 |
+
# Initialize leaderboard with smart columns
|
337 |
+
leaderboard = initialize_leaderboard(
|
338 |
+
df=df,
|
339 |
+
column_class=None, # Replace with your actual column class
|
340 |
+
filters=filters,
|
341 |
+
mappings=mappings,
|
342 |
+
initial_columns=["Method", "IOI Score (Type 1)"]
|
343 |
+
)
|
344 |
+
|
345 |
+
demo.launch()
|