import json import os import shutil import re import numpy as np import pandas as pd import gradio as gr from urllib.parse import urlparse from collections import defaultdict from datetime import datetime, timedelta, timezone from typing import Literal from huggingface_hub import HfApi, HfFileSystem, hf_hub_url, get_hf_file_metadata from huggingface_hub import ModelCard from huggingface_hub.hf_api import ModelInfo from transformers import AutoConfig from transformers.models.auto.tokenization_auto import AutoTokenizer from src.display.utils import TEXT_TASKS, VISION_TASKS, NUM_EXPECTED_EXAMPLES from src.envs import EVAL_REQUESTS_SUBGRAPH, EVAL_REQUESTS_CAUSALGRAPH def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]: """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses.""" try: config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) if test_tokenizer: try: tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) except ValueError as e: return ( False, f"uses a tokenizer which is not in a transformers release: {e}", None ) except Exception as e: return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None) return True, None, config except ValueError: return ( False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", None ) except Exception as e: return False, "was not found on hub!", None def get_model_size(model_info: ModelInfo, precision: str): """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" try: model_size = round(model_info.safetensors["total"] / 1e9, 3) except (AttributeError, TypeError): return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 model_size = size_factor * model_size return model_size def get_model_arch(model_info: ModelInfo): """Gets the model architecture from the configuration""" return model_info.config.get("architectures", "Unknown") def already_submitted_models(requested_models_dir: str) -> set[str]: """Gather a list of already submitted models to avoid duplicates""" depth = 1 file_names = [] users_to_submission_dates = defaultdict(list) for root, _, files in os.walk(requested_models_dir): current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) if current_depth == depth: for file in files: if not file.endswith(".json"): continue with open(os.path.join(root, file), "r") as f: info = json.load(f) file_names.append(f"{info['model']}_{info['revision']}_{info['track']}") # Select organisation if info["model"].count("/") == 0 or "submitted_time" not in info: continue organisation, _ = info["model"].split("/") users_to_submission_dates[organisation].append(info["submitted_time"]) return set(file_names), users_to_submission_dates def is_valid_predictions(predictions: dict) -> tuple[bool, str]: out_msg = "" for task in TEXT_TASKS: if task not in predictions: out_msg = f"Error: {task} not present" break for subtask in TEXT_TASKS[task]: if subtask not in predictions[task]: out_msg = f"Error: {subtask} not present under {task}" break if out_msg != "": break if "vqa" in predictions or "winoground" in predictions or "devbench" in predictions: for task in VISION_TASKS: if task not in predictions: out_msg = f"Error: {task} not present" break for subtask in VISION_TASKS[task]: if subtask not in predictions[task]: out_msg = f"Error: {subtask} not present under {task}" break if out_msg != "": break # Make sure all examples have predictions, and that predictions are the correct type for task in predictions: for subtask in predictions[task]: if task == "devbench": a = np.array(predictions[task][subtask]["predictions"]) if subtask == "sem-things": required_shape = (1854, 1854) elif subtask == "gram-trog": required_shape = (76, 4, 1) elif subtask == "lex-viz_vocab": required_shape = (119, 4, 1) if a.shape[0] != required_shape[0] or a.shape[1] != required_shape[1]: out_msg = f"Error: Wrong shape for results for `{subtask}` in `{task}`." break if not str(a.dtype).startswith("float"): out_msg = f"Error: Results for `{subtask}` ({task}) \ should be floats but aren't." break continue num_expected_examples = NUM_EXPECTED_EXAMPLES[task][subtask] if len(predictions[task][subtask]["predictions"]) != num_expected_examples: out_msg = f"Error: {subtask} has the wrong number of examples." break if task == "glue": if type(predictions[task][subtask]["predictions"][0]["pred"]) != int: out_msg = f"Error: results for `{subtask}` (`{task}`) should be integers but aren't." break else: if type(predictions[task][subtask]["predictions"][0]["pred"]) != str: out_msg = f"Error: results for `{subtask}` (`{task}`) should be strings but aren't." break if out_msg != "": break if out_msg != "": return False, out_msg return True, "Upload successful." def _format_time(earliest_time): time_left = (earliest_time.tz_convert("UTC") + timedelta(weeks=1)) - pd.Timestamp.utcnow() hours = time_left.seconds // 3600 minutes, seconds = divmod(time_left.seconds % 3600, 60) time_left_formatted = f"{hours:02}:{minutes:02}:{seconds:02}" if time_left.days > 0: time_left_formatted = f"{time_left.days} days, {time_left_formatted}" return time_left_formatted def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requests""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) # if "still_on_hub" in data and data["still_on_hub"]: # data[EvalQueueColumn.model.name] = make_clickable_model(data["hf_repo"], data["model"]) # data[EvalQueueColumn.revision.name] = data.get("revision", "main") # else: # data[EvalQueueColumn.model.name] = data["model"] # data[EvalQueueColumn.revision.name] = "N/A" all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) all_evals.append(data) return pd.DataFrame(all_evals) def check_rate_limit(track, user_name, contact_email): if "Circuit" in track: save_path = EVAL_REQUESTS_SUBGRAPH else: save_path = EVAL_REQUESTS_CAUSALGRAPH evaluation_queue = get_evaluation_queue_df(save_path, ["user_name", "contact_email"]) if evaluation_queue.empty: return True, None one_week_ago = pd.Timestamp.utcnow() - timedelta(weeks=1) user_name_occurrences = evaluation_queue[evaluation_queue["user_name"] == user_name] user_name_occurrences["submit_time"] = pd.to_datetime(user_name_occurrences["submit_time"], utc=True) user_name_occurrences = user_name_occurrences[user_name_occurrences["submit_time"] >= one_week_ago] email_occurrences = evaluation_queue[evaluation_queue["contact_email"] == contact_email.lower()] email_occurrences["submit_time"] = pd.to_datetime(email_occurrences["submit_time"], utc=True) email_occurrences = email_occurrences[email_occurrences["submit_time"] >= one_week_ago] if user_name_occurrences.shape[0] >= 2: earliest_time = user_name_occurrences["submit_time"].min() time_left_formatted = _format_time(earliest_time) return False, time_left_formatted if email_occurrences.shape[0] >= 2: earliest_time = email_occurrences["submit_time"].min() time_left_formatted = _format_time(earliest_time) return False, time_left_formatted return True, None def parse_huggingface_url(url: str): """ Extracts repo_id and subfolder path from a Hugging Face URL. Returns (repo_id, folder_path). """ # Handle cases where the input is already a repo_id (no URL) if not url.startswith(("http://", "https://")): return url, None parsed = urlparse(url) path_parts = parsed.path.strip("/").split("/") # Extract repo_id (username/repo_name) if len(path_parts) < 2: raise ValueError("Invalid Hugging Face URL: Could not extract repo_id.") repo_id = f"{path_parts[0]}/{path_parts[1]}" # Extract folder path (if in /tree/ or /blob/) if "tree" in path_parts or "blob" in path_parts: try: branch_idx = path_parts.index("tree") if "tree" in path_parts else path_parts.index("blob") folder_path = "/".join(path_parts[branch_idx + 2:]) # Skip "tree/main" or "blob/main" except (ValueError, IndexError): folder_path = None else: folder_path = None return repo_id, folder_path def validate_directory(fs: HfFileSystem, repo_id: str, dirname: str, curr_tm: str, circuit_level:Literal['edge', 'node','neuron']='edge'): errors = [] warnings = [] task, model = curr_tm.split("_") curr_tm_display = curr_tm.replace("_", "/") files = fs.ls(dirname) # Detect whether multi-circuit or importances is_multiple_circuits = False files = [f["name"] for f in files if (f["name"].endswith(".json") or f["name"].endswith(".pt"))] if len(files) == 1: is_multiple_circuits = False elif len(files) > 1: is_multiple_circuits = True if len(files) < 9: errors.append(f"Folder for {curr_tm_display} contains multiple circuits, but not enough. If you intended to submit importances, include only one circuit in the folder. Otherwise, please add the rest of the circuits.") else: warnings.append(f"Directory present for {curr_tm_display} but is empty") offset = 0 for idx, file in enumerate(files): file_suffix = file.split(repo_id + "/")[1] file_url = hf_hub_url(repo_id=repo_id, filename=file_suffix) file_info = get_hf_file_metadata(file_url) file_size_mb = file_info.size / (1024 * 1024) if file_size_mb > 150: warnings.append(f"Will skip file >150MB: {file}") offset -= 1 continue if is_multiple_circuits and idx + offset >= 9: break return errors, warnings def verify_circuit_submission(hf_repo, level, progress=gr.Progress()): VALID_COMBINATIONS = [ "ioi_gpt2", "ioi_qwen2.5", "ioi_gemma2", "ioi_llama3", "ioi_interpbench", "mcqa_qwen2.5", "mcqa_gemma2", "mcqa_llama3", "arithmetic-addition_llama3", "arithmetic-subtraction_llama3", "arc-easy_gemma2", "arc-easy_llama3", "arc-challenge_llama3" ] TASKS = ["ioi", "mcqa", "arithmetic-addition", "arithmetic-subtraction", "arc-easy", "arc-challenge"] MODELS = ["gpt2", "qwen2.5", "gemma2", "llama3", "interpbench"] errors = [] warnings = [] directories_present = {tm: False for tm in VALID_COMBINATIONS} directories_valid = {tm: False for tm in VALID_COMBINATIONS} fs = HfFileSystem() path = hf_repo level = level folder_path = path.split("huggingface.co/")[1] repo_id = "/".join(folder_path.split("/")[:2]) try: files = fs.listdir(folder_path) except Exception as e: errors.append(f"Could not open Huggingface URL: {e}") return errors, warnings file_counts = 0 for dirname in progress.tqdm(files, desc="Validating directories in repo"): file_counts += 1 if file_counts >= 30: warnings.append("Folder contains many files/directories; stopped at 30.") break circuit_dir = dirname["name"] dirname_proc = circuit_dir.lower().split("/")[-1] if not fs.isdir(circuit_dir): continue curr_task = None curr_model = None # Look for task names in filename for task in TASKS: if dirname_proc.startswith(task) or f"_{task}" in dirname_proc: curr_task = task # Look for model names in filename for model in MODELS: if dirname_proc.startswith(model) or f"_{model}" in dirname_proc: curr_model = model if curr_task is not None and curr_model is not None: curr_tm = f"{curr_task}_{curr_model}" if curr_tm in VALID_COMBINATIONS: directories_present[curr_tm] = True else: continue else: continue # Parse circuits directory print(f"validating {circuit_dir}") vd_errors, vd_warnings = validate_directory(fs, repo_id, circuit_dir, curr_tm, level) errors.extend(vd_errors) warnings.extend(vd_warnings) if len(vd_errors) == 0: directories_valid[curr_tm] = True task_set, model_set = set(), set() for tm in directories_present: if not directories_present[tm]: continue if not directories_valid[tm]: warnings.append(f"Directory found for {tm.replace('_', '/')}, but circuits not valid or present") continue task, model = tm.split("_") task_set.add(task) model_set.add(model) if len(task_set) < 2: errors.append("At least 2 tasks are required") if len(model_set) < 2: errors.append("At least 2 models are required") no_tm_display = [tm.replace("_", "/") for tm in directories_valid if not directories_valid[tm]] if len(no_tm_display) > 0: warnings.append(f"No valid circuits or importance scores found for the following tasks/models: {*no_tm_display,}") return errors, warnings def verify_causal_variable_submission(hf_repo, layer, position, code_upload): return