import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, AutoEvalColumnMultimodal, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results, get_raw_eval_results_mib def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" print(f"results_path is {results_path}, requests_path is {requests_path}") raw_data = get_raw_eval_results(results_path, requests_path) print(f"raw_data is {raw_data}") all_data_json = [v.to_dict() for v in raw_data] print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}") all_data_json_filtered = [] for item in all_data_json: item["Track"] = item["eval_name"].split("_")[-1] item["ioi"] = 0 item["mcqa"] = 0 if "VQA" in benchmark_cols and "VQA" in item: all_data_json_filtered.append(item) if "VQA" not in benchmark_cols and "VQA" not in item: all_data_json_filtered.append(item) all_data_json = all_data_json_filtered df = pd.DataFrame.from_records(all_data_json) df = df.sort_values(by=[AutoEvalColumn.text_average.name], ascending=False) # df = df.sort_values(by=[Tasks.task0.value.col_name], ascending=False) # df = df.sort_values(by=[AutoEvalColumn.track.name], ascending=False) print(f"df is {df}") # df = df[cols].round(decimals=1) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] return df # def get_leaderboard_df_mib(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: # """Creates a dataframe from all the individual experiment results""" # print(f"results_path is {results_path}, requests_path is {requests_path}") # raw_data = get_raw_eval_results(results_path, requests_path) # print(f"raw_data is {raw_data}") # all_data_json = [v.to_dict() for v in raw_data] # print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}") # all_data_json_filtered = [] # for item in all_data_json: # item["Track"] = item["eval_name"].split("_")[-1] # if "VQA" in benchmark_cols and "VQA" in item: # all_data_json_filtered.append(item) # if "VQA" not in benchmark_cols and "VQA" not in item: # all_data_json_filtered.append(item) # all_data_json_filtered.append(item) # all_data_json = all_data_json_filtered # df = pd.DataFrame.from_records(all_data_json) # df = df.sort_values(by=[AutoEvalColumn.text_average.name], ascending=False) # print(f"df is {df}") # df = df[cols].round(decimals=1) # # filter out if any of the benchmarks have not been produced # df = df[has_no_nan_values(df, benchmark_cols)] # return df def get_leaderboard_df_mib(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the MIB experiment results""" print(f"results_path is {results_path}, requests_path is {requests_path}") raw_data = get_raw_eval_results_mib(results_path, requests_path) print(f"raw_data is {raw_data}") # Convert each result to dict format all_data_json = [v.to_dict() for v in raw_data] print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}") # Convert to dataframe df = pd.DataFrame.from_records(all_data_json) # Sort by Average score descending if 'Average' in df.columns: # Convert '-' to NaN for sorting purposes df['Average'] = pd.to_numeric(df['Average'], errors='coerce') df = df.sort_values(by=['Average'], ascending=False, na_position='last') # Convert NaN back to '-' df['Average'] = df['Average'].fillna('-') return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requests""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) if "still_on_hub" in data and data["still_on_hub"]: data[EvalQueueColumn.model.name] = make_clickable_model(data["hf_repo"], data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") else: data[EvalQueueColumn.model.name] = data["model"] data[EvalQueueColumn.revision.name] = "N/A" all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]