import json import os import smtplib from datetime import datetime, timezone from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import API, EVAL_REQUESTS_SUBGRAPH, EVAL_REQUESTS_CAUSALGRAPH, TOKEN, QUEUE_REPO_SUBGRAPH, QUEUE_REPO_CAUSALGRAPH from src.submission.check_validity import ( already_submitted_models, get_model_size, is_model_on_hub, is_valid_predictions, parse_huggingface_url ) import gradio as gr REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None def upload_to_queue(track, hf_repo_circ, hf_repo_cg, level, method_name, contact_email, _id): errors = [] hf_repo = hf_repo_circ if "Circuit" in track else hf_repo_cg repo_id, folder_path, revision = parse_huggingface_url(hf_repo) try: user_name, repo_name = repo_id.split("/") except Exception as e: errors.append("Error processing HF URL: could not get username and repo name") if revision is None or revision == "main": try: commit_hash = API.list_repo_commits(repo_id)[0].commit_id except Exception as e: errors.append("Could not get commit hash of provided Huggingface repo") current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if not errors: if "Circuit" in track: eval_entry = { "hf_repo": hf_repo, "user_name": user_name, "revision": commit_hash, "circuit_level": level.lower(), "method_name": method_name, "contact_email": contact_email.lower(), "submit_time": current_time, "status": "PREVALIDATION", "_id": _id } QUEUE_REPO = QUEUE_REPO_SUBGRAPH EVAL_REQUESTS = EVAL_REQUESTS_SUBGRAPH else: eval_entry = { "hf_repo": hf_repo, "user_name": user_name, "revision": commit_hash, "method_name": method_name, "contact_email": contact_email.lower(), "submit_time": current_time, "status": "PREVALIDATION", "_id": _id } QUEUE_REPO = QUEUE_REPO_CAUSALGRAPH EVAL_REQUESTS = EVAL_REQUESTS_CAUSALGRAPH OUT_DIR = f"{EVAL_REQUESTS}/" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{method_name}_{_id}_{current_time}.json" with open(out_path, 'w') as f: f.write(json.dumps(eval_entry)) try: API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("/")[-1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {method_name}_{_id}_{current_time}.json to eval queue" ) except Exception as e: errors.append(f"Could not upload entry to eval queue: {e}") if errors: status = gr.Textbox("\n\n".join(f"❌ {e}" for e in errors), visible=True) else: status = gr.Textbox(f"✅ Submission received! Your submission ID is \"{_id}\". Save this so that you can manage your submission on the queue.", visible=True) return [ status, None, None, gr.Column(visible=False) ] def add_new_eval( model_name: str, model_id: str, revision: str, track: str, predictions: dict, ): global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) out_message = "" user_name = "" model_path = model_name if "/" in model_name: user_name = model_name.split("/")[0] model_path = model_name.split("/")[1] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if track is None: return styled_error("Please select a track.") # Does the model actually exist? if revision == "": revision = "main" out_message = "" # Is the model info correctly filled? print("Made it before 1") try: model_info = API.model_info(repo_id=model_id, revision=revision) except Exception: out_message += styled_warning("Could not get your model information. The leaderboard entry will not have a link to its HF repo.") + "
" print("Made it after 1") try: predictions_OK, error_msg = is_valid_predictions(predictions) if not predictions_OK: return styled_error(error_msg) + "
" except: return styled_error(error_msg) + "
" print("Made it after 3") # Seems good, creating the eval print("Adding new eval") eval_entry = { "model_name": model_name, "hf_repo": model_id, "revision": revision, "track": track, "predictions": predictions, "status": "PENDING", "submitted_time": current_time, } print("Made it after 4") # Check for duplicate submission if f"{model_name}_{revision}_{track}" in REQUESTED_MODELS: return styled_error("A model with this name has been already submitted.") print("Creating eval file") OUT_DIR = f"{EVAL_REQUESTS}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_{revision}_eval_request_False_{track}.json" print("Made it after 5") with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model_name} to eval queue", ) print("Made it after 6") # Remove the local file os.remove(out_path) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the request to show in the PENDING list." ) def remove_submission(track: str, method_name: str, _id: str): if track is None: return gr.Textbox(f"Please select a track.", visible=True) if "Circuit" in track: QUEUE_REPO = QUEUE_REPO_SUBGRAPH EVAL_REQUESTS = EVAL_REQUESTS_SUBGRAPH else: QUEUE_REPO = QUEUE_REPO_CAUSALGRAPH EVAL_REQUESTS = EVAL_REQUESTS_CAUSALGRAPH OUT_DIR = f"{EVAL_REQUESTS}/" os.makedirs(OUT_DIR, exist_ok=True) files = os.listdir(OUT_DIR) out_paths = [f for f in files if f.startswith(f"{method_name}_{_id}")] if out_paths: filename = out_paths[0] filepath = os.path.join(OUT_DIR, filename) with open(filepath, 'r') as f: data = json.load(f) hf_repo = data["hf_repo"] try: API.delete_file( path_in_repo=filename, repo_id=QUEUE_REPO, repo_type="dataset" ) except Exception as e: return gr.Textbox(f"Could not delete entry from eval queue: {e}", visible=True) os.remove(filepath) status = "Submission removed from queue." else: status = "Submission not found in queue." return gr.Textbox(status, visible=True)