from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks, TasksMib_Subgraph, TasksMib_Causalgraph def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns auto_eval_column_dict = [] auto_eval_column_dict_multimodal = [] auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) auto_eval_column_dict.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)]) auto_eval_column_dict.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)]) #Scores # for task in Tasks: # auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # Model information auto_eval_column_dict.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)]) auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) auto_eval_column_dict_multimodal.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) auto_eval_column_dict_multimodal.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)]) auto_eval_column_dict_multimodal.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)]) # for task in TasksMultimodal: # auto_eval_column_dict_multimodal.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # if task.value.col_name in ("ewok", "EWoK"): # make sure this appears in the right order # auto_eval_column_dict_multimodal.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)]) auto_eval_column_dict_multimodal.append(["vision_average", ColumnContent, ColumnContent("Vision Average", "number", True)]) auto_eval_column_dict_multimodal.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) auto_eval_column_dict_multimodal.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) AutoEvalColumnMultimodal = make_dataclass("AutoEvalColumnMultimodal", auto_eval_column_dict_multimodal, frozen=True) ############################################################################################################## # Version 3 auto_eval_column_dict_mib_subgraph = [] # Method name column (always present) auto_eval_column_dict_mib_subgraph.append( ["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)] ) # Add columns for each task-model combination for task in TasksMib_Subgraph: for model in task.value.models: field_name = f"{task.value.benchmark}_{model}" display_name = f"{task.value.benchmark}({model})" print(f"Creating column - Field name: {field_name}, Display name: {display_name}") column_content = ColumnContent(display_name, "number", True) print(f"Column content name property: {column_content.name}") auto_eval_column_dict_mib_subgraph.append([ field_name, ColumnContent, column_content ]) # Add the Average column auto_eval_column_dict_mib_subgraph.append( ["average", ColumnContent, ColumnContent("Average", "number", True)] ) print("\nFinal column configurations:") for field in auto_eval_column_dict_mib_subgraph: print(f"Field name: {field[0]}, Display name: {field[2].name}") # Create the dataclass for MIB columns AutoEvalColumn_mib_subgraph = make_dataclass("AutoEvalColumn_mib_subgraph", auto_eval_column_dict_mib_subgraph, frozen=True) # Column selection for display COLS_MIB_SUBGRAPH = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if not c.hidden] BENCHMARK_COLS_MIB_SUBGRAPH = [] for task in TasksMib_Subgraph: for model in task.value.models: col_name = f"{task.value.col_name}_{model.replace('-', '_')}" BENCHMARK_COLS_MIB_SUBGRAPH.append(col_name) # Implement the same for causal graph, auto_eval_column_dict_mib_causalgraph, AutoEvalColumn_mib_causalgraph AutoEvalColumn_mib_causalgraph = [] COLS_MIB_CAUSALGRAPH = [] BENCHMARK_COLS_MIB_CAUSALGRAPH = [] auto_eval_column_dict_mib_causalgraph = [] # Only include Method column as required auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)]) # For each model-task-intervention-counterfactual combination for task in TasksMib_Causalgraph: for model in task.value.models: # model will be lowercase col_name = f"{task.value.benchmark}_{model}" auto_eval_column_dict_mib_causalgraph.append([ col_name, ColumnContent, ColumnContent(col_name, "number", True) ]) # Add the Average column auto_eval_column_dict_mib_causalgraph.append( ["average_score", ColumnContent, ColumnContent("Average", "number", True)] ) # Create the dataclass AutoEvalColumn_mib_causalgraph = make_dataclass( "AutoEvalColumn_mib_causalgraph", auto_eval_column_dict_mib_causalgraph, frozen=True ) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column track_name = ColumnContent("track", "str", True) method_name = ColumnContent("method_name", "str", True) repo_id = ColumnContent("hf_repo", "markdown", True) revision = ColumnContent("revision", "str", True) status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] COLS_MULTIMODAL = [c.name for c in fields(AutoEvalColumnMultimodal) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks]