File size: 9,106 Bytes
6770007 1b8aef5 6770007 1b8aef5 b066853 1b8aef5 6770007 1b8aef5 bc0013e 1b8aef5 bc0013e 1b8aef5 bc0013e 1b8aef5 bc0013e 1b8aef5 6770007 1b8aef5 6770007 1b8aef5 6770007 1b8aef5 6770007 1b8aef5 b066853 1b8aef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import datetime as dt
import dotenv
import re
from typing import Any, Literal
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_core.messages import SystemMessage, AnyMessage
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_ollama import ChatOllama
from langchain_tavily import TavilySearch, TavilyExtract
from langgraph.constants import START, END
from langgraph.graph import MessagesState, StateGraph
from langgraph.graph.graph import CompiledGraph
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langgraph.prebuilt import ToolNode
from pydantic import BaseModel
from tools import (
get_excel_table_content,
get_youtube_video_transcript,
reverse_string,
transcribe_audio_file,
web_page_info_retriever,
youtube_video_to_frame_captions, sum_list, execute_python_script,
)
dotenv.load_dotenv()
class AgentFactory:
"""
A factory for the agent. It is assumed that an Ollama server is running
on the machine where the factory is used.
"""
__system_prompt: str = (
"You have to answer to some test questions.\n"
"Sometimes auxiliary files may be attached to the question.\n"
"Each question is a JSON string with the following fields:\n"
"1. task_id: unique hash identifier of the question.\n"
"2. question: the text of the question.\n"
"3. Level: ignore this field.\n"
"4. file_name: the name of the file needed to answer the question. "
"This is empty if the question does not refer to any file. "
"IMPORTANT: The text of the question may mention a file name that is "
"different from what is reported into the \"file_name\" JSON field. "
"YOU HAVE TO IGNORE THE FILE NAME MENTIONED INTO \"question\" AND "
"YOU MUST USE THE FILE NAME PROVIDED INTO THE \"file_name\" FIELD.\n"
"\n"
"Achieve the solution by dividing your reasoning in steps, and\n"
"provide an explanation for each step.\n"
"\n"
"The format of your final answer must be\n"
"\n"
"<ANSWER>your_final_answer</Answer>, where your_final_answer is a\n"
"number OR as few words as possible OR a comma separated list of\n"
"numbers and/or strings. If you are asked for\n"
"a number, don't use comma to write your number neither use units\n"
"such as $ or percent sign unless specified otherwise. If you are\n"
"asked for a string, don't use articles, neither abbreviations (e.g.\n"
"for cities), and write the digits in plain text unless specified\n"
"otherwise. If you are asked for a comma separated list, apply the\n"
"above rules depending of whether the element to be put in the list\n"
"is a number or a string.\n"
"ALWAYS PRESENT THE FINAL ANSWER BETWEEN THE <ANSWER> AND </ANSWER>\n"
"TAGS.\n"
"\n"
"When, for achieving the solution, you have to perform a sum, DON'T\n"
"try to do that yourself. Exploit the tool that is able to sum a list\n"
" of numbers. If you have to sum the results of previous sums, use\n"
"again the same tool, by calling it again.\n"
"You are advised to cycle between reasoning and tool calling also\n"
"multiple times. Provide an answer only when you are sure you don't\n"
"have to call any tool again.\n"
"\n"
f"If you need it, the date today is {dt.date.today()}."
)
__llm: Runnable
__tools: list[BaseTool]
def __init__(
self,
model: str = "qwen2.5-coder:32b",
# model: str = "mistral-small3.1",
# model: str = "phi4-mini",
temperature: float = 0.0,
num_ctx: int = 8192
) -> None:
"""
Constructor.
Args:
model: The name of the Ollama model to use.
temperature: Temperature parameter.
num_ctx: Size of the context window used to generate the
next token.
"""
# search_tool = DuckDuckGoSearchResults(
# description=(
# "A wrapper around Duck Duck Go Search. Useful for when you "
# "need to answer questions about information you can find on "
# "the web. Input should be a search query. It is advisable to "
# "use this tool to retrieve web page URLs and use another tool "
# "to analyze the pages. If the web source is suggested by the "
# "user query, prefer retrieving information from that source. "
# "For example, the query may suggest to search on Wikipedia or "
# "Medium. In those cases, prepend the query with "
# "'site: <name of the source>'. For example: "
# "'site: wikipedia.org'"
# ),
# output_format="list"
# )
search_tool = TavilySearch(
topic="general",
max_results=5,
include_answer="advanced",
)
# search_tool.with_retry()
extract_tool = TavilyExtract(
extract_depth="advanced",
include_images=False,
)
self.__tools = [
execute_python_script,
get_excel_table_content,
get_youtube_video_transcript,
reverse_string,
search_tool,
extract_tool,
sum_list,
transcribe_audio_file,
# web_page_info_retriever,
youtube_video_to_frame_captions
]
self.__llm = ChatOllama(
model=model,
temperature=temperature,
num_ctx=num_ctx
).bind_tools(tools=self.__tools)
# llm_endpoint = HuggingFaceEndpoint(
# repo_id="Qwen/Qwen2.5-72B-Instruct",
# task="text-generation",
# max_new_tokens=num_ctx,
# do_sample=False,
# repetition_penalty=1.03,
# temperature=temperature,
# )
#
# self.__llm = (
# ChatHuggingFace(llm=llm_endpoint)
# .bind_tools(tools=self.__tools)
# )
def __run_llm(self, state: MessagesState) -> dict[str, Any]:
answer = self.__llm.invoke(state["messages"])
# Remove thinking pattern if present
pattern = r'\n*<think>.*?</think>\n*'
answer.content = re.sub(
pattern, "", answer.content, flags=re.DOTALL
)
return {"messages": [answer]}
@staticmethod
def __extract_last_message(
state: list[AnyMessage] | dict[str, Any] | BaseModel,
messages_key: str
) -> str:
if isinstance(state, list):
last_message = state[-1]
elif isinstance(state, dict) and (messages := state.get(messages_key, [])):
last_message = messages[-1]
elif messages := getattr(state, messages_key, []):
last_message = messages[-1]
else:
raise ValueError(f"No messages found in input state to tool_edge: {state}")
return last_message
def __route_from_llm(
self,
state: list[AnyMessage] | dict[str, Any] | BaseModel,
messages_key: str = "messages",
) -> Literal["tools", "extract_final_answer"]:
ai_message = self.__extract_last_message(state, messages_key)
if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0:
return "tools"
return "extract_final_answer"
@staticmethod
def __extract_final_answer(state: MessagesState) -> dict[str, Any]:
last_message = state["messages"][-1].content
pattern = r"<ANSWER>(?P<answer>.*?)</ANSWER>"
m = re.search(pattern, last_message, flags=re.DOTALL)
answer = m.group("answer").strip() if m else ""
return {"messages": [answer]}
@property
def system_prompt(self) -> SystemMessage:
"""
Returns:
The system prompt to use with the agent.
"""
return SystemMessage(content=self.__system_prompt)
def get(self) -> CompiledGraph:
"""
Factory method.
Returns:
The instance of the agent.
"""
graph_builder = StateGraph(MessagesState)
graph_builder.add_node("LLM", self.__run_llm)
graph_builder.add_node("tools", ToolNode(tools=self.__tools))
graph_builder.add_node(
"extract_final_answer",
self.__extract_final_answer
)
graph_builder.add_edge(start_key=START, end_key="LLM")
graph_builder.add_conditional_edges(
source="LLM",
path=self.__route_from_llm,
path_map={
"tools": "tools",
"extract_final_answer": "extract_final_answer"
}
)
graph_builder.add_edge(start_key="tools", end_key="LLM")
graph_builder.add_edge(start_key="extract_final_answer", end_key=END)
return graph_builder.compile()
|