import dotenv import importlib.resources import json import os from typing import Any import gradio as gr import requests import pandas as pd from pathlib import Path from langchain_core.messages import HumanMessage from langgraph.graph import MessagesState from langgraph.graph.graph import CompiledGraph from agent_factory import AgentFactory dotenv.load_dotenv() HF_ACCESS_TOKEN = os.getenv("HF_ACCESS_TOKEN") HF_USERNAME = os.getenv("HF_USERNAME") # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" DATA_PATH = Path(str(importlib.resources.files("data"))) QUESTIONS_FILE_PATH = DATA_PATH / "questions.jsonl" AGENT_ANSWERS_FILE_PATH = DATA_PATH / "agent-answers.jsonl" # --- Basic Agent Definition --- # ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------ class BasicAgent: __agent_factory: AgentFactory __agent: CompiledGraph def __init__(self): self.__agent_factory = AgentFactory() self.__agent = self.__agent_factory.get() print("BasicAgent initialized.") def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") initial_state = MessagesState( messages=[ self.__agent_factory.system_prompt, HumanMessage(content=question) ] ) final_state = self.__agent.invoke(input=initial_state) answer = final_state["messages"][-1].content print(f"Agent returning answer: {answer}") return answer def retrieve_downloaded_questions() -> list[dict[str, Any]]: with open(QUESTIONS_FILE_PATH, mode="r") as f: return [json.loads(line) for line in f] def download_questions_and_files() -> list[dict[str, Any]]: api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" files_base_url = f"{api_url}/files" print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return [{ "error": "Fetched questions list is empty or invalid format." }] print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return [{ "error": f"Error fetching questions: {e}" }] except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return [{ "error": f"Error decoding server response for questions: {e}" }] except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return [{ "error": f"An unexpected error occurred fetching questions: {e}" }] # Save input questions and related files into the data subdirectory try: with open(QUESTIONS_FILE_PATH, mode="w") as f: for cur_question in questions_data: json.dump(cur_question, f) f.write("\n") file_name = cur_question["file_name"] if len(file_name) > 0: file_url = f"{files_base_url}/{cur_question["task_id"]}" response = requests.get(file_url) out_file_path = DATA_PATH / file_name with open(out_file_path, 'wb') as file: file.write(response.content) except requests.exceptions.RequestException as e: print(f"Error fetching question-related file: {e}") return [{ "error": f"Error fetching question-related file: {e}" }] except Exception as e: print(f"An unexpected error occurred fetching question-related file: {e}") return [{ "error": f"An unexpected error occurred fetching question-related file: {e}" }] return questions_data def create_answers_file_if_not_exists() -> None: if not os.path.exists(AGENT_ANSWERS_FILE_PATH): with open(AGENT_ANSWERS_FILE_PATH, 'w'): pass def get_answers_payload() -> list[dict[str, Any]]: with open(AGENT_ANSWERS_FILE_PATH, mode="r") as f: answers_payload = [json.loads(line) for line in f] return answers_payload def get_task_ids_to_process() -> list[str]: with open(QUESTIONS_FILE_PATH, mode="r") as f: all_tasks = set([json.loads(line)["task_id"] for line in f]) answers = get_answers_payload() answered_tasks = set([answer["task_id"] for answer in answers]) tasks_to_answer = all_tasks - answered_tasks return list(tasks_to_answer) def run_and_submit_all() -> tuple[str, pd.DataFrame | None]: """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code username= f"{HF_USERNAME}" print(f"User: {username}") api_url = DEFAULT_API_URL submit_url = f"{api_url}/submit" # 1. Instantiate Agent ( modify this part to create your agent) try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points # towards your codebase ( useful for others so please keep it public) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions and related files (they get saved into the data directory) if os.path.exists(QUESTIONS_FILE_PATH): questions_data = retrieve_downloaded_questions() else: questions_data = download_questions_and_files() # 3. Run your Agent and save agent's answers for later review create_answers_file_if_not_exists() task_ids_to_process = get_task_ids_to_process() results_log = [] print(f"Running agent on {len(questions_data)} questions...") with open(AGENT_ANSWERS_FILE_PATH, mode="a") as f: for item in questions_data: task_id = item.get("task_id") if task_id not in task_ids_to_process: print(f"Skipping already answered question: {item}") continue question_text = json.dumps(item) if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: answer_to_submit = agent(question_text) answer_payload = {"task_id": task_id, "submitted_answer": answer_to_submit} json.dump(answer_payload, f) f.write("\n") f.flush() results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer_to_submit}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) answers_payload = get_answers_payload() if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) if len(answers_payload) < len(questions_data): msg = "Still need to process all the questions. Rerun until all questions are answered." print(msg) return msg, pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") headers = { "Authorization": f"Bearer {HF_ACCESS_TOKEN}", "Content-Type": "application/json" } try: response = requests.post( submit_url, json=submission_data, headers=headers, timeout=60 ) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Read the `README.md` file for configuration. 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). """ ) # gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Removed max_rows=10 from DataFrame constructor results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)