import importlib.resources import json import torch from pathlib import Path from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from question_retriever import get_question from tools.data_helpers import get_file_path __resources_path = Path(str(importlib.resources.files("data"))) def test_whisper() -> None: task_id = "1f975693-876d-457b-a649-393859e79bf3" question = json.loads(get_question(task_id=task_id)) audio_file = get_file_path(file_name=question["file_name"]) # cuda_available = torch.cuda.is_available() cuda_available = False device = "cuda:0" if cuda_available else "cpu" torch_dtype = torch.float16 if cuda_available else torch.float32 model_id = "openai/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) sample = audio_file generate_kwargs = { "return_timestamps": True, } result = pipe(sample, generate_kwargs=generate_kwargs) print(result["text"])