import torch from langchain_core.tools import tool from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from .data_helpers import get_file_path @tool(parse_docstring=True) def transcribe_audio_file(file_name: str) -> str: """ Transcribes an audio file to text. Args: file_name: The name of the audio file. This is simply the file name, not the full path. Returns: The transcribed text. """ # Specific setting for local run with GPU busy for the LLM (ollama) cuda_available = False device = "cuda:0" if cuda_available else "cpu" torch_dtype = torch.float16 if cuda_available else torch.float32 model_id = "openai/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) generate_kwargs = { "return_timestamps": True, } file_path = get_file_path(file_name) result = pipe(file_path, generate_kwargs=generate_kwargs) return result["text"]