| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						from typing import Optional | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Attention(nn.Module): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    A cross attention layer. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        query_dim (`int`): | 
					
					
						
						| 
							 | 
						            The number of channels in the query. | 
					
					
						
						| 
							 | 
						        cross_attention_dim (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | 
					
					
						
						| 
							 | 
						        heads (`int`,  *optional*, defaults to 8): | 
					
					
						
						| 
							 | 
						            The number of heads to use for multi-head attention. | 
					
					
						
						| 
							 | 
						        dim_head (`int`,  *optional*, defaults to 64): | 
					
					
						
						| 
							 | 
						            The number of channels in each head. | 
					
					
						
						| 
							 | 
						        dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout probability to use. | 
					
					
						
						| 
							 | 
						        bias (`bool`, *optional*, defaults to False): | 
					
					
						
						| 
							 | 
						            Set to `True` for the query, key, and value linear layers to contain a bias parameter. | 
					
					
						
						| 
							 | 
						        upcast_attention (`bool`, *optional*, defaults to False): | 
					
					
						
						| 
							 | 
						            Set to `True` to upcast the attention computation to `float32`. | 
					
					
						
						| 
							 | 
						        upcast_softmax (`bool`, *optional*, defaults to False): | 
					
					
						
						| 
							 | 
						            Set to `True` to upcast the softmax computation to `float32`. | 
					
					
						
						| 
							 | 
						        cross_attention_norm (`str`, *optional*, defaults to `None`): | 
					
					
						
						| 
							 | 
						            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | 
					
					
						
						| 
							 | 
						        cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            The number of groups to use for the group norm in the cross attention. | 
					
					
						
						| 
							 | 
						        added_kv_proj_dim (`int`, *optional*, defaults to `None`): | 
					
					
						
						| 
							 | 
						            The number of channels to use for the added key and value projections. If `None`, no projection is used. | 
					
					
						
						| 
							 | 
						        norm_num_groups (`int`, *optional*, defaults to `None`): | 
					
					
						
						| 
							 | 
						            The number of groups to use for the group norm in the attention. | 
					
					
						
						| 
							 | 
						        spatial_norm_dim (`int`, *optional*, defaults to `None`): | 
					
					
						
						| 
							 | 
						            The number of channels to use for the spatial normalization. | 
					
					
						
						| 
							 | 
						        out_bias (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Set to `True` to use a bias in the output linear layer. | 
					
					
						
						| 
							 | 
						        scale_qk (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. | 
					
					
						
						| 
							 | 
						        only_cross_attention (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if | 
					
					
						
						| 
							 | 
						            `added_kv_proj_dim` is not `None`. | 
					
					
						
						| 
							 | 
						        eps (`float`, *optional*, defaults to 1e-5): | 
					
					
						
						| 
							 | 
						            An additional value added to the denominator in group normalization that is used for numerical stability. | 
					
					
						
						| 
							 | 
						        rescale_output_factor (`float`, *optional*, defaults to 1.0): | 
					
					
						
						| 
							 | 
						            A factor to rescale the output by dividing it with this value. | 
					
					
						
						| 
							 | 
						        residual_connection (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Set to `True` to add the residual connection to the output. | 
					
					
						
						| 
							 | 
						        _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Set to `True` if the attention block is loaded from a deprecated state dict. | 
					
					
						
						| 
							 | 
						        processor (`AttnProcessor`, *optional*, defaults to `None`): | 
					
					
						
						| 
							 | 
						            The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and | 
					
					
						
						| 
							 | 
						            `AttnProcessor` otherwise. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        query_dim: int, | 
					
					
						
						| 
							 | 
						        cross_attention_dim: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        heads: int = 8, | 
					
					
						
						| 
							 | 
						        dim_head: int = 64, | 
					
					
						
						| 
							 | 
						        dropout: float = 0.0, | 
					
					
						
						| 
							 | 
						        bias: bool = False, | 
					
					
						
						| 
							 | 
						        upcast_attention: bool = False, | 
					
					
						
						| 
							 | 
						        upcast_softmax: bool = False, | 
					
					
						
						| 
							 | 
						        cross_attention_norm: Optional[str] = None, | 
					
					
						
						| 
							 | 
						        cross_attention_norm_num_groups: int = 32, | 
					
					
						
						| 
							 | 
						        added_kv_proj_dim: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        norm_num_groups: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        out_bias: bool = True, | 
					
					
						
						| 
							 | 
						        scale_qk: bool = True, | 
					
					
						
						| 
							 | 
						        only_cross_attention: bool = False, | 
					
					
						
						| 
							 | 
						        eps: float = 1e-5, | 
					
					
						
						| 
							 | 
						        rescale_output_factor: float = 1.0, | 
					
					
						
						| 
							 | 
						        residual_connection: bool = False, | 
					
					
						
						| 
							 | 
						        _from_deprecated_attn_block: bool = False, | 
					
					
						
						| 
							 | 
						        processor: Optional["AttnProcessor"] = None, | 
					
					
						
						| 
							 | 
						        out_dim: int = None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.inner_dim = out_dim if out_dim is not None else dim_head * heads | 
					
					
						
						| 
							 | 
						        self.query_dim = query_dim | 
					
					
						
						| 
							 | 
						        self.cross_attention_dim = ( | 
					
					
						
						| 
							 | 
						            cross_attention_dim if cross_attention_dim is not None else query_dim | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.upcast_attention = upcast_attention | 
					
					
						
						| 
							 | 
						        self.upcast_softmax = upcast_softmax | 
					
					
						
						| 
							 | 
						        self.rescale_output_factor = rescale_output_factor | 
					
					
						
						| 
							 | 
						        self.residual_connection = residual_connection | 
					
					
						
						| 
							 | 
						        self.dropout = dropout | 
					
					
						
						| 
							 | 
						        self.fused_projections = False | 
					
					
						
						| 
							 | 
						        self.out_dim = out_dim if out_dim is not None else query_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._from_deprecated_attn_block = _from_deprecated_attn_block | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.scale_qk = scale_qk | 
					
					
						
						| 
							 | 
						        self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.heads = out_dim // dim_head if out_dim is not None else heads | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.sliceable_head_dim = heads | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.added_kv_proj_dim = added_kv_proj_dim | 
					
					
						
						| 
							 | 
						        self.only_cross_attention = only_cross_attention | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.added_kv_proj_dim is None and self.only_cross_attention: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if norm_num_groups is not None: | 
					
					
						
						| 
							 | 
						            self.group_norm = nn.GroupNorm( | 
					
					
						
						| 
							 | 
						                num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.group_norm = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.spatial_norm = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if cross_attention_norm is None: | 
					
					
						
						| 
							 | 
						            self.norm_cross = None | 
					
					
						
						| 
							 | 
						        elif cross_attention_norm == "layer_norm": | 
					
					
						
						| 
							 | 
						            self.norm_cross = nn.LayerNorm(self.cross_attention_dim) | 
					
					
						
						| 
							 | 
						        elif cross_attention_norm == "group_norm": | 
					
					
						
						| 
							 | 
						            if self.added_kv_proj_dim is not None: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                norm_cross_num_channels = added_kv_proj_dim | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                norm_cross_num_channels = self.cross_attention_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.norm_cross = nn.GroupNorm( | 
					
					
						
						| 
							 | 
						                num_channels=norm_cross_num_channels, | 
					
					
						
						| 
							 | 
						                num_groups=cross_attention_norm_num_groups, | 
					
					
						
						| 
							 | 
						                eps=1e-5, | 
					
					
						
						| 
							 | 
						                affine=True, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        linear_cls = nn.Linear | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.linear_cls = linear_cls | 
					
					
						
						| 
							 | 
						        self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not self.only_cross_attention: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | 
					
					
						
						| 
							 | 
						            self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.to_k = None | 
					
					
						
						| 
							 | 
						            self.to_v = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.added_kv_proj_dim is not None: | 
					
					
						
						| 
							 | 
						            self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | 
					
					
						
						| 
							 | 
						            self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.to_out = nn.ModuleList([]) | 
					
					
						
						| 
							 | 
						        self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias)) | 
					
					
						
						| 
							 | 
						        self.to_out.append(nn.Dropout(dropout)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if processor is None: | 
					
					
						
						| 
							 | 
						            processor = ( | 
					
					
						
						| 
							 | 
						                AttnProcessor2_0() | 
					
					
						
						| 
							 | 
						                if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | 
					
					
						
						| 
							 | 
						                else AttnProcessor() | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        self.set_processor(processor) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_processor(self, processor: "AttnProcessor") -> None: | 
					
					
						
						| 
							 | 
						        self.processor = processor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.FloatTensor, | 
					
					
						
						| 
							 | 
						        encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        **cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						    ) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        The forward method of the `Attention` class. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                The hidden states of the query. | 
					
					
						
						| 
							 | 
						            encoder_hidden_states (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                The hidden states of the encoder. | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                The attention mask to use. If `None`, no mask is applied. | 
					
					
						
						| 
							 | 
						            **cross_attention_kwargs: | 
					
					
						
						| 
							 | 
						                Additional keyword arguments to pass along to the cross attention. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `torch.Tensor`: The output of the attention layer. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        return self.processor( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states, | 
					
					
						
						| 
							 | 
						            encoder_hidden_states=encoder_hidden_states, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            **cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` | 
					
					
						
						| 
							 | 
						        is the number of heads initialized while constructing the `Attention` class. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            tensor (`torch.Tensor`): The tensor to reshape. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `torch.Tensor`: The reshaped tensor. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        head_size = self.heads | 
					
					
						
						| 
							 | 
						        batch_size, seq_len, dim = tensor.shape | 
					
					
						
						| 
							 | 
						        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | 
					
					
						
						| 
							 | 
						        tensor = tensor.permute(0, 2, 1, 3).reshape( | 
					
					
						
						| 
							 | 
						            batch_size // head_size, seq_len, dim * head_size | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return tensor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is | 
					
					
						
						| 
							 | 
						        the number of heads initialized while constructing the `Attention` class. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            tensor (`torch.Tensor`): The tensor to reshape. | 
					
					
						
						| 
							 | 
						            out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is | 
					
					
						
						| 
							 | 
						                reshaped to `[batch_size * heads, seq_len, dim // heads]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `torch.Tensor`: The reshaped tensor. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        head_size = self.heads | 
					
					
						
						| 
							 | 
						        batch_size, seq_len, dim = tensor.shape | 
					
					
						
						| 
							 | 
						        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | 
					
					
						
						| 
							 | 
						        tensor = tensor.permute(0, 2, 1, 3) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if out_dim == 3: | 
					
					
						
						| 
							 | 
						            tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return tensor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_attention_scores( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        query: torch.Tensor, | 
					
					
						
						| 
							 | 
						        key: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: torch.Tensor = None, | 
					
					
						
						| 
							 | 
						    ) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Compute the attention scores. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            query (`torch.Tensor`): The query tensor. | 
					
					
						
						| 
							 | 
						            key (`torch.Tensor`): The key tensor. | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `torch.Tensor`: The attention probabilities/scores. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        dtype = query.dtype | 
					
					
						
						| 
							 | 
						        if self.upcast_attention: | 
					
					
						
						| 
							 | 
						            query = query.float() | 
					
					
						
						| 
							 | 
						            key = key.float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is None: | 
					
					
						
						| 
							 | 
						            baddbmm_input = torch.empty( | 
					
					
						
						| 
							 | 
						                query.shape[0], | 
					
					
						
						| 
							 | 
						                query.shape[1], | 
					
					
						
						| 
							 | 
						                key.shape[1], | 
					
					
						
						| 
							 | 
						                dtype=query.dtype, | 
					
					
						
						| 
							 | 
						                device=query.device, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            beta = 0 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            baddbmm_input = attention_mask | 
					
					
						
						| 
							 | 
						            beta = 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attention_scores = torch.baddbmm( | 
					
					
						
						| 
							 | 
						            baddbmm_input, | 
					
					
						
						| 
							 | 
						            query, | 
					
					
						
						| 
							 | 
						            key.transpose(-1, -2), | 
					
					
						
						| 
							 | 
						            beta=beta, | 
					
					
						
						| 
							 | 
						            alpha=self.scale, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        del baddbmm_input | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.upcast_softmax: | 
					
					
						
						| 
							 | 
						            attention_scores = attention_scores.float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attention_probs = attention_scores.softmax(dim=-1) | 
					
					
						
						| 
							 | 
						        del attention_scores | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attention_probs = attention_probs.to(dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attention_probs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_attention_mask( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        attention_mask: torch.Tensor, | 
					
					
						
						| 
							 | 
						        target_length: int, | 
					
					
						
						| 
							 | 
						        batch_size: int, | 
					
					
						
						| 
							 | 
						        out_dim: int = 3, | 
					
					
						
						| 
							 | 
						    ) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Prepare the attention mask for the attention computation. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                The attention mask to prepare. | 
					
					
						
						| 
							 | 
						            target_length (`int`): | 
					
					
						
						| 
							 | 
						                The target length of the attention mask. This is the length of the attention mask after padding. | 
					
					
						
						| 
							 | 
						            batch_size (`int`): | 
					
					
						
						| 
							 | 
						                The batch size, which is used to repeat the attention mask. | 
					
					
						
						| 
							 | 
						            out_dim (`int`, *optional*, defaults to `3`): | 
					
					
						
						| 
							 | 
						                The output dimension of the attention mask. Can be either `3` or `4`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `torch.Tensor`: The prepared attention mask. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        head_size = self.heads | 
					
					
						
						| 
							 | 
						        if attention_mask is None: | 
					
					
						
						| 
							 | 
						            return attention_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        current_length: int = attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						        if current_length != target_length: | 
					
					
						
						| 
							 | 
						            if attention_mask.device.type == "mps": | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                padding_shape = ( | 
					
					
						
						| 
							 | 
						                    attention_mask.shape[0], | 
					
					
						
						| 
							 | 
						                    attention_mask.shape[1], | 
					
					
						
						| 
							 | 
						                    target_length, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                padding = torch.zeros( | 
					
					
						
						| 
							 | 
						                    padding_shape, | 
					
					
						
						| 
							 | 
						                    dtype=attention_mask.dtype, | 
					
					
						
						| 
							 | 
						                    device=attention_mask.device, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                attention_mask = torch.cat([attention_mask, padding], dim=2) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if out_dim == 3: | 
					
					
						
						| 
							 | 
						            if attention_mask.shape[0] < batch_size * head_size: | 
					
					
						
						| 
							 | 
						                attention_mask = attention_mask.repeat_interleave(head_size, dim=0) | 
					
					
						
						| 
							 | 
						        elif out_dim == 4: | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask.unsqueeze(1) | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask.repeat_interleave(head_size, dim=1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attention_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def norm_encoder_hidden_states( | 
					
					
						
						| 
							 | 
						        self, encoder_hidden_states: torch.Tensor | 
					
					
						
						| 
							 | 
						    ) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the | 
					
					
						
						| 
							 | 
						        `Attention` class. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `torch.Tensor`: The normalized encoder hidden states. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        assert ( | 
					
					
						
						| 
							 | 
						            self.norm_cross is not None | 
					
					
						
						| 
							 | 
						        ), "self.norm_cross must be defined to call self.norm_encoder_hidden_states" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(self.norm_cross, nn.LayerNorm): | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = self.norm_cross(encoder_hidden_states) | 
					
					
						
						| 
							 | 
						        elif isinstance(self.norm_cross, nn.GroupNorm): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = self.norm_cross(encoder_hidden_states) | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            assert False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return encoder_hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def fuse_projections(self, fuse=True): | 
					
					
						
						| 
							 | 
						        is_cross_attention = self.cross_attention_dim != self.query_dim | 
					
					
						
						| 
							 | 
						        device = self.to_q.weight.data.device | 
					
					
						
						| 
							 | 
						        dtype = self.to_q.weight.data.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not is_cross_attention: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            concatenated_weights = torch.cat( | 
					
					
						
						| 
							 | 
						                [self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data] | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            in_features = concatenated_weights.shape[1] | 
					
					
						
						| 
							 | 
						            out_features = concatenated_weights.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            self.to_qkv = self.linear_cls( | 
					
					
						
						| 
							 | 
						                in_features, out_features, bias=False, device=device, dtype=dtype | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            self.to_qkv.weight.copy_(concatenated_weights) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            concatenated_weights = torch.cat( | 
					
					
						
						| 
							 | 
						                [self.to_k.weight.data, self.to_v.weight.data] | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            in_features = concatenated_weights.shape[1] | 
					
					
						
						| 
							 | 
						            out_features = concatenated_weights.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.to_kv = self.linear_cls( | 
					
					
						
						| 
							 | 
						                in_features, out_features, bias=False, device=device, dtype=dtype | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            self.to_kv.weight.copy_(concatenated_weights) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.fused_projections = fuse | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class AttnProcessor: | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Default processor for performing attention-related computations. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __call__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        attn: Attention, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.FloatTensor, | 
					
					
						
						| 
							 | 
						        encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        input_ndim = hidden_states.ndim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ndim == 4: | 
					
					
						
						| 
							 | 
						            batch_size, channel, height, width = hidden_states.shape | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states.view( | 
					
					
						
						| 
							 | 
						                batch_size, channel, height * width | 
					
					
						
						| 
							 | 
						            ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length, _ = ( | 
					
					
						
						| 
							 | 
						            hidden_states.shape | 
					
					
						
						| 
							 | 
						            if encoder_hidden_states is None | 
					
					
						
						| 
							 | 
						            else encoder_hidden_states.shape | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        attention_mask = attn.prepare_attention_mask( | 
					
					
						
						| 
							 | 
						            attention_mask, sequence_length, batch_size | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn.group_norm is not None: | 
					
					
						
						| 
							 | 
						            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( | 
					
					
						
						| 
							 | 
						                1, 2 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query = attn.to_q(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if encoder_hidden_states is None: | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = hidden_states | 
					
					
						
						| 
							 | 
						        elif attn.norm_cross: | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = attn.norm_encoder_hidden_states( | 
					
					
						
						| 
							 | 
						                encoder_hidden_states | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key = attn.to_k(encoder_hidden_states) | 
					
					
						
						| 
							 | 
						        value = attn.to_v(encoder_hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query = attn.head_to_batch_dim(query) | 
					
					
						
						| 
							 | 
						        key = attn.head_to_batch_dim(key) | 
					
					
						
						| 
							 | 
						        value = attn.head_to_batch_dim(value) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attention_probs = attn.get_attention_scores(query, key, attention_mask) | 
					
					
						
						| 
							 | 
						        hidden_states = torch.bmm(attention_probs, value) | 
					
					
						
						| 
							 | 
						        hidden_states = attn.batch_to_head_dim(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = attn.to_out[0](hidden_states) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = attn.to_out[1](hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ndim == 4: | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states.transpose(-1, -2).reshape( | 
					
					
						
						| 
							 | 
						                batch_size, channel, height, width | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn.residual_connection: | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states + residual | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states / attn.rescale_output_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class AttnProcessor2_0: | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self): | 
					
					
						
						| 
							 | 
						        if not hasattr(F, "scaled_dot_product_attention"): | 
					
					
						
						| 
							 | 
						            raise ImportError( | 
					
					
						
						| 
							 | 
						                "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __call__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        attn: Attention, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.FloatTensor, | 
					
					
						
						| 
							 | 
						        encoder_hidden_states: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> torch.FloatTensor: | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        input_ndim = hidden_states.ndim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ndim == 4: | 
					
					
						
						| 
							 | 
						            batch_size, channel, height, width = hidden_states.shape | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states.view( | 
					
					
						
						| 
							 | 
						                batch_size, channel, height * width | 
					
					
						
						| 
							 | 
						            ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length, _ = ( | 
					
					
						
						| 
							 | 
						            hidden_states.shape | 
					
					
						
						| 
							 | 
						            if encoder_hidden_states is None | 
					
					
						
						| 
							 | 
						            else encoder_hidden_states.shape | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            attention_mask = attn.prepare_attention_mask( | 
					
					
						
						| 
							 | 
						                attention_mask, sequence_length, batch_size | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask.view( | 
					
					
						
						| 
							 | 
						                batch_size, attn.heads, -1, attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn.group_norm is not None: | 
					
					
						
						| 
							 | 
						            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( | 
					
					
						
						| 
							 | 
						                1, 2 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query = attn.to_q(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if encoder_hidden_states is None: | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = hidden_states | 
					
					
						
						| 
							 | 
						        elif attn.norm_cross: | 
					
					
						
						| 
							 | 
						            encoder_hidden_states = attn.norm_encoder_hidden_states( | 
					
					
						
						| 
							 | 
						                encoder_hidden_states | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key = attn.to_k(encoder_hidden_states) | 
					
					
						
						| 
							 | 
						        value = attn.to_v(encoder_hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        inner_dim = key.shape[-1] | 
					
					
						
						| 
							 | 
						        head_dim = inner_dim // attn.heads | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = F.scaled_dot_product_attention( | 
					
					
						
						| 
							 | 
						            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.transpose(1, 2).reshape( | 
					
					
						
						| 
							 | 
						            batch_size, -1, attn.heads * head_dim | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.to(query.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = attn.to_out[0](hidden_states) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = attn.to_out[1](hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ndim == 4: | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states.transpose(-1, -2).reshape( | 
					
					
						
						| 
							 | 
						                batch_size, channel, height, width | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn.residual_connection: | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states + residual | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states / attn.rescale_output_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						
 |