Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
-
import numpy as np
|
4 |
import pandas as pd
|
5 |
|
6 |
-
|
|
|
7 |
"""
|
8 |
-
Create a plot showing model performance evolution over time.
|
9 |
-
|
10 |
Parameters:
|
11 |
-
df: DataFrame with columns ['model_name', 'release_date',
|
|
|
12 |
"""
|
13 |
# Sort by release date to ensure chronological order
|
14 |
df_sorted = df.sort_values('release_date').copy()
|
15 |
-
|
16 |
-
# Calculate cumulative best (SOTA) for
|
17 |
-
df_sorted['cumulative_best'] = df_sorted[
|
18 |
-
|
19 |
-
# Identify which models are SOTA (where
|
20 |
-
df_sorted['is_sota'] = df_sorted[
|
21 |
-
|
22 |
# Get SOTA models for the line
|
23 |
sota_df = df_sorted[df_sorted['is_sota']].copy()
|
24 |
-
|
25 |
# Create the plot
|
26 |
fig = go.Figure()
|
27 |
-
|
28 |
# Add all models as scatter points (gray for non-SOTA, cyan for SOTA)
|
29 |
fig.add_trace(go.Scatter(
|
30 |
x=df_sorted['release_date'],
|
31 |
-
y=df_sorted[
|
32 |
mode='markers',
|
33 |
name='All models',
|
34 |
marker=dict(
|
35 |
-
color=['#00CED1' if is_sota else 'lightgray'
|
36 |
for is_sota in df_sorted['is_sota']],
|
37 |
size=8,
|
38 |
opacity=0.7
|
39 |
),
|
40 |
text=df_sorted['model_name'],
|
41 |
-
hovertemplate='<b>%{text}</b><br>Date: %{x}<br>
|
42 |
))
|
43 |
-
|
44 |
# Add SOTA line (cumulative best)
|
45 |
fig.add_trace(go.Scatter(
|
46 |
x=df_sorted['release_date'],
|
@@ -48,14 +49,14 @@ def create_sota_plot(df):
|
|
48 |
mode='lines',
|
49 |
name='State-of-the-art (cumulative best)',
|
50 |
line=dict(color='#00CED1', width=2, dash='solid'),
|
51 |
-
hovertemplate='SOTA
|
52 |
))
|
53 |
-
|
54 |
# Add labels for SOTA models (models that improved the best score)
|
55 |
for _, row in sota_df.iterrows():
|
56 |
fig.add_annotation(
|
57 |
x=row['release_date'],
|
58 |
-
y=row[
|
59 |
text=row['model_name'],
|
60 |
showarrow=True,
|
61 |
arrowhead=2,
|
@@ -66,12 +67,12 @@ def create_sota_plot(df):
|
|
66 |
ay=-30,
|
67 |
font=dict(size=10)
|
68 |
)
|
69 |
-
|
70 |
# Update layout
|
71 |
fig.update_layout(
|
72 |
-
title='Evolution of Model Performance Over Time',
|
73 |
xaxis_title='Release Date',
|
74 |
-
yaxis_title='
|
75 |
xaxis=dict(
|
76 |
showgrid=True,
|
77 |
gridcolor='lightgray'
|
@@ -91,17 +92,18 @@ def create_sota_plot(df):
|
|
91 |
),
|
92 |
hovermode='closest'
|
93 |
)
|
94 |
-
|
95 |
return fig
|
96 |
|
|
|
97 |
def create_sample_dataframe():
|
98 |
"""
|
99 |
-
Create a sample DataFrame with model performance
|
100 |
"""
|
101 |
-
# Create sample data
|
102 |
data = {
|
103 |
'model_name': [
|
104 |
-
'SIFT + FVs', 'AlexNet', 'VGG-16', 'GoogLeNet', 'ResNet-50',
|
105 |
'SPPNet', 'Inception V2', 'Inception V3', 'ResNet-152', 'DenseNet',
|
106 |
'MobileNet', 'NASNET-A(6)', 'EfficientNet', 'Vision Transformer',
|
107 |
'CoAtNet-7', 'CLIP', 'DALL-E', 'GPT-Vision', 'Model-X', 'Model-Y',
|
@@ -118,71 +120,185 @@ def create_sample_dataframe():
|
|
118 |
'2013-03-10', '2013-07-22', '2014-01-15', '2015-03-20', '2016-02-14',
|
119 |
'2017-06-30', '2018-09-12', '2019-02-28', '2020-04-15', '2021-08-30'
|
120 |
]),
|
121 |
-
'
|
122 |
53.0, 65.0, 71.5, 74.8, 76.0,
|
123 |
74.0, 78.0, 81.0, 77.8, 79.2,
|
124 |
70.6, 82.7, 84.3, 85.2,
|
125 |
90.88, 86.5, 87.0, 87.79, 87.73, 88.1,
|
126 |
-
# Scores for non-SOTA models
|
127 |
58.0, 62.0, 68.0, 72.0, 73.5,
|
128 |
75.0, 78.5, 80.0, 82.0, 84.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
]
|
130 |
}
|
131 |
-
|
132 |
return pd.DataFrame(data)
|
133 |
|
|
|
134 |
# Create Gradio interface
|
135 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
136 |
-
gr.Markdown("# State-of-the-Art Models Timeline with
|
137 |
gr.Markdown("""
|
138 |
-
This visualization shows the evolution of model performance over time.
|
139 |
-
The line represents the cumulative best (SOTA) score achieved up to each point in time.
|
140 |
""")
|
141 |
-
|
142 |
-
plot = gr.Plot(label="Model Performance Evolution")
|
143 |
-
|
144 |
# Create the main DataFrame inline
|
145 |
df_main = create_sample_dataframe()
|
146 |
-
|
147 |
-
#
|
|
|
|
|
|
|
148 |
with gr.Row():
|
149 |
-
with gr.Column():
|
|
|
150 |
gr.Markdown(f"**Total models in dataset:** {len(df_main)}")
|
151 |
-
gr.Markdown(
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
# Create plot on load
|
155 |
-
demo.load(
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
# Add interactive controls
|
158 |
with gr.Row():
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
# DataFrame display (initially hidden)
|
163 |
df_display = gr.Dataframe(
|
164 |
value=df_main,
|
165 |
label="Model Performance Data",
|
166 |
visible=False
|
167 |
)
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
show_data_btn.click(
|
175 |
-
fn=
|
176 |
outputs=df_display
|
177 |
)
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
179 |
gr.Markdown("""
|
180 |
### About this visualization:
|
181 |
-
- **
|
|
|
182 |
- **Cyan dots**: Models that achieved a new SOTA when released
|
183 |
- **Gray dots**: Other models that didn't beat the existing SOTA
|
184 |
-
- **Hover over points**: See model names, release dates, and
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
""")
|
187 |
|
188 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
|
|
3 |
import pandas as pd
|
4 |
|
5 |
+
|
6 |
+
def create_sota_plot(df, metric='accuracy'):
|
7 |
"""
|
8 |
+
Create a plot showing model performance evolution over time for a selected metric.
|
9 |
+
|
10 |
Parameters:
|
11 |
+
df: DataFrame with columns ['model_name', 'release_date', and metric columns]
|
12 |
+
metric: The metric column to visualize
|
13 |
"""
|
14 |
# Sort by release date to ensure chronological order
|
15 |
df_sorted = df.sort_values('release_date').copy()
|
16 |
+
|
17 |
+
# Calculate cumulative best (SOTA) for the selected metric
|
18 |
+
df_sorted['cumulative_best'] = df_sorted[metric].cummax()
|
19 |
+
|
20 |
+
# Identify which models are SOTA (where metric equals cumulative best)
|
21 |
+
df_sorted['is_sota'] = df_sorted[metric] == df_sorted['cumulative_best']
|
22 |
+
|
23 |
# Get SOTA models for the line
|
24 |
sota_df = df_sorted[df_sorted['is_sota']].copy()
|
25 |
+
|
26 |
# Create the plot
|
27 |
fig = go.Figure()
|
28 |
+
|
29 |
# Add all models as scatter points (gray for non-SOTA, cyan for SOTA)
|
30 |
fig.add_trace(go.Scatter(
|
31 |
x=df_sorted['release_date'],
|
32 |
+
y=df_sorted[metric],
|
33 |
mode='markers',
|
34 |
name='All models',
|
35 |
marker=dict(
|
36 |
+
color=['#00CED1' if is_sota else 'lightgray'
|
37 |
for is_sota in df_sorted['is_sota']],
|
38 |
size=8,
|
39 |
opacity=0.7
|
40 |
),
|
41 |
text=df_sorted['model_name'],
|
42 |
+
hovertemplate=f'<b>%{{text}}</b><br>Date: %{{x}}<br>{metric.capitalize()}: %{{y:.2f}}<extra></extra>'
|
43 |
))
|
44 |
+
|
45 |
# Add SOTA line (cumulative best)
|
46 |
fig.add_trace(go.Scatter(
|
47 |
x=df_sorted['release_date'],
|
|
|
49 |
mode='lines',
|
50 |
name='State-of-the-art (cumulative best)',
|
51 |
line=dict(color='#00CED1', width=2, dash='solid'),
|
52 |
+
hovertemplate=f'SOTA {metric.capitalize()}: %{{y:.2f}}<br>Date: %{{x}}<extra></extra>'
|
53 |
))
|
54 |
+
|
55 |
# Add labels for SOTA models (models that improved the best score)
|
56 |
for _, row in sota_df.iterrows():
|
57 |
fig.add_annotation(
|
58 |
x=row['release_date'],
|
59 |
+
y=row[metric],
|
60 |
text=row['model_name'],
|
61 |
showarrow=True,
|
62 |
arrowhead=2,
|
|
|
67 |
ay=-30,
|
68 |
font=dict(size=10)
|
69 |
)
|
70 |
+
|
71 |
# Update layout
|
72 |
fig.update_layout(
|
73 |
+
title=f'Evolution of Model Performance Over Time - {metric.upper()}',
|
74 |
xaxis_title='Release Date',
|
75 |
+
yaxis_title=f'{metric.capitalize()} Score',
|
76 |
xaxis=dict(
|
77 |
showgrid=True,
|
78 |
gridcolor='lightgray'
|
|
|
92 |
),
|
93 |
hovermode='closest'
|
94 |
)
|
95 |
+
|
96 |
return fig
|
97 |
|
98 |
+
|
99 |
def create_sample_dataframe():
|
100 |
"""
|
101 |
+
Create a sample DataFrame with multiple metrics for model performance.
|
102 |
"""
|
103 |
+
# Create sample data with multiple metrics
|
104 |
data = {
|
105 |
'model_name': [
|
106 |
+
'SIFT + FVs', 'AlexNet', 'VGG-16', 'GoogLeNet', 'ResNet-50',
|
107 |
'SPPNet', 'Inception V2', 'Inception V3', 'ResNet-152', 'DenseNet',
|
108 |
'MobileNet', 'NASNET-A(6)', 'EfficientNet', 'Vision Transformer',
|
109 |
'CoAtNet-7', 'CLIP', 'DALL-E', 'GPT-Vision', 'Model-X', 'Model-Y',
|
|
|
120 |
'2013-03-10', '2013-07-22', '2014-01-15', '2015-03-20', '2016-02-14',
|
121 |
'2017-06-30', '2018-09-12', '2019-02-28', '2020-04-15', '2021-08-30'
|
122 |
]),
|
123 |
+
'accuracy': [
|
124 |
53.0, 65.0, 71.5, 74.8, 76.0,
|
125 |
74.0, 78.0, 81.0, 77.8, 79.2,
|
126 |
70.6, 82.7, 84.3, 85.2,
|
127 |
90.88, 86.5, 87.0, 87.79, 87.73, 88.1,
|
128 |
+
# Scores for non-SOTA models
|
129 |
58.0, 62.0, 68.0, 72.0, 73.5,
|
130 |
75.0, 78.5, 80.0, 82.0, 84.0
|
131 |
+
],
|
132 |
+
'top5_accuracy': [
|
133 |
+
71.0, 82.0, 89.5, 91.2, 92.5,
|
134 |
+
91.0, 93.5, 95.0, 94.0, 94.5,
|
135 |
+
89.5, 96.2, 97.1, 97.5,
|
136 |
+
98.5, 97.8, 98.0, 98.2, 98.1, 98.3,
|
137 |
+
# Top-5 scores for non-SOTA models
|
138 |
+
75.0, 80.0, 85.0, 88.0, 90.0,
|
139 |
+
91.5, 93.0, 95.5, 96.0, 96.5
|
140 |
+
],
|
141 |
+
'parameters_millions': [
|
142 |
+
0.5, 62, 138, 6.8, 25.6,
|
143 |
+
21.0, 11.2, 23.8, 60.3, 7.9,
|
144 |
+
4.2, 88.9, 66.0, 86.0,
|
145 |
+
2185.0, 428.0, 1200.0, 1750.0, 890.0, 920.0,
|
146 |
+
# Parameters for non-SOTA models
|
147 |
+
2.5, 3.8, 15.0, 8.5, 5.2,
|
148 |
+
12.0, 3.5, 6.7, 9.0, 11.5
|
149 |
+
],
|
150 |
+
'flops_billions': [
|
151 |
+
0.1, 1.5, 15.5, 1.5, 3.8,
|
152 |
+
2.5, 2.0, 5.7, 11.3, 2.8,
|
153 |
+
0.57, 23.8, 9.9, 16.9,
|
154 |
+
420.0, 85.0, 250.0, 380.0, 180.0, 195.0,
|
155 |
+
# FLOPs for non-SOTA models
|
156 |
+
0.3, 0.5, 2.0, 1.2, 0.8,
|
157 |
+
1.8, 0.4, 1.0, 1.5, 2.2
|
158 |
+
],
|
159 |
+
'inference_time_ms': [
|
160 |
+
85, 23, 45, 28, 35,
|
161 |
+
32, 26, 30, 48, 38,
|
162 |
+
18, 65, 42, 55,
|
163 |
+
120, 75, 95, 110, 88, 92,
|
164 |
+
# Inference time for non-SOTA models
|
165 |
+
15, 20, 30, 25, 22,
|
166 |
+
28, 12, 18, 24, 35
|
167 |
]
|
168 |
}
|
169 |
+
|
170 |
return pd.DataFrame(data)
|
171 |
|
172 |
+
|
173 |
# Create Gradio interface
|
174 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
175 |
+
gr.Markdown("# State-of-the-Art Models Timeline with Multiple Metrics")
|
176 |
gr.Markdown("""
|
177 |
+
This visualization shows the evolution of model performance over time across different metrics.
|
178 |
+
Use the dropdown to switch between metrics. The line represents the cumulative best (SOTA) score achieved up to each point in time.
|
179 |
""")
|
180 |
+
|
|
|
|
|
181 |
# Create the main DataFrame inline
|
182 |
df_main = create_sample_dataframe()
|
183 |
+
|
184 |
+
# Get available metrics (exclude non-metric columns)
|
185 |
+
metric_columns = [col for col in df_main.columns if col not in ['model_name', 'release_date']]
|
186 |
+
|
187 |
+
# Create layout with dropdown in upper right
|
188 |
with gr.Row():
|
189 |
+
with gr.Column(scale=3):
|
190 |
+
# Display data info
|
191 |
gr.Markdown(f"**Total models in dataset:** {len(df_main)}")
|
192 |
+
gr.Markdown(
|
193 |
+
f"**Date range:** {df_main['release_date'].min().date()} to {df_main['release_date'].max().date()}")
|
194 |
+
with gr.Column(scale=1):
|
195 |
+
metric_dropdown = gr.Dropdown(
|
196 |
+
choices=metric_columns,
|
197 |
+
value='accuracy',
|
198 |
+
label="Select Metric",
|
199 |
+
interactive=True
|
200 |
+
)
|
201 |
+
|
202 |
+
plot = gr.Plot(label="Model Performance Evolution")
|
203 |
+
|
204 |
+
|
205 |
+
# Function to update plot and statistics
|
206 |
+
def update_plot_and_stats(selected_metric):
|
207 |
+
fig = create_sota_plot(df_main, selected_metric)
|
208 |
+
best_value = df_main[selected_metric].max()
|
209 |
+
best_model = df_main.loc[df_main[selected_metric].idxmax(), 'model_name']
|
210 |
+
|
211 |
+
# Format statistics based on metric type
|
212 |
+
if selected_metric == 'parameters_millions':
|
213 |
+
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}M ({best_model})"
|
214 |
+
elif selected_metric == 'flops_billions':
|
215 |
+
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}B ({best_model})"
|
216 |
+
elif selected_metric == 'inference_time_ms':
|
217 |
+
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}ms ({best_model})"
|
218 |
+
else:
|
219 |
+
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.2f}% ({best_model})"
|
220 |
+
|
221 |
+
return fig, stats_text
|
222 |
+
|
223 |
+
|
224 |
+
# Display best score for selected metric
|
225 |
+
metric_stats = gr.Markdown()
|
226 |
+
|
227 |
# Create plot on load
|
228 |
+
demo.load(
|
229 |
+
fn=lambda: update_plot_and_stats('accuracy'),
|
230 |
+
outputs=[plot, metric_stats]
|
231 |
+
)
|
232 |
+
|
233 |
+
# Update plot when metric changes
|
234 |
+
metric_dropdown.change(
|
235 |
+
fn=update_plot_and_stats,
|
236 |
+
inputs=metric_dropdown,
|
237 |
+
outputs=[plot, metric_stats]
|
238 |
+
)
|
239 |
+
|
240 |
# Add interactive controls
|
241 |
with gr.Row():
|
242 |
+
show_data_btn = gr.Button("Show/Hide DataFrame")
|
243 |
+
export_stats_btn = gr.Button("Export Statistics")
|
244 |
+
|
245 |
# DataFrame display (initially hidden)
|
246 |
df_display = gr.Dataframe(
|
247 |
value=df_main,
|
248 |
label="Model Performance Data",
|
249 |
visible=False
|
250 |
)
|
251 |
+
|
252 |
+
|
253 |
+
def toggle_dataframe():
|
254 |
+
return gr.Dataframe(value=df_main, visible=True)
|
255 |
+
|
256 |
+
|
257 |
+
def export_statistics():
|
258 |
+
stats = []
|
259 |
+
for metric in metric_columns:
|
260 |
+
best_value = df_main[metric].max()
|
261 |
+
best_model = df_main.loc[df_main[metric].idxmax(), 'model_name']
|
262 |
+
avg_value = df_main[metric].mean()
|
263 |
+
stats.append({
|
264 |
+
'Metric': metric.replace('_', ' ').title(),
|
265 |
+
'Best Value': f"{best_value:.2f}",
|
266 |
+
'Best Model': best_model,
|
267 |
+
'Average': f"{avg_value:.2f}"
|
268 |
+
})
|
269 |
+
stats_df = pd.DataFrame(stats)
|
270 |
+
return gr.Dataframe(value=stats_df, visible=True)
|
271 |
+
|
272 |
+
|
273 |
+
stats_display = gr.Dataframe(
|
274 |
+
label="Statistics Summary",
|
275 |
+
visible=False
|
276 |
+
)
|
277 |
+
|
278 |
show_data_btn.click(
|
279 |
+
fn=toggle_dataframe,
|
280 |
outputs=df_display
|
281 |
)
|
282 |
+
|
283 |
+
export_stats_btn.click(
|
284 |
+
fn=export_statistics,
|
285 |
+
outputs=stats_display
|
286 |
+
)
|
287 |
+
|
288 |
gr.Markdown("""
|
289 |
### About this visualization:
|
290 |
+
- **Metric Selector**: Use the dropdown in the upper right to switch between different performance metrics
|
291 |
+
- **Cyan line**: Cumulative best (SOTA) score over time for the selected metric
|
292 |
- **Cyan dots**: Models that achieved a new SOTA when released
|
293 |
- **Gray dots**: Other models that didn't beat the existing SOTA
|
294 |
+
- **Hover over points**: See model names, release dates, and metric values
|
295 |
+
|
296 |
+
### Available Metrics:
|
297 |
+
- **Accuracy**: Top-1 accuracy on ImageNet (%)
|
298 |
+
- **Top5 Accuracy**: Top-5 accuracy on ImageNet (%)
|
299 |
+
- **Parameters (Millions)**: Model size in millions of parameters
|
300 |
+
- **FLOPs (Billions)**: Computational cost in billions of operations
|
301 |
+
- **Inference Time (ms)**: Time to process a single image
|
302 |
""")
|
303 |
|
304 |
demo.launch()
|