Michael Shekasta
commited on
Commit
Β·
a8592c4
1
Parent(s):
966ba85
adding files
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- requirements.txt +4 -0
- .gitattributes +1 -0
- README.md +3 -3
- app.py +994 -0
- m.py +0 -0
- pwc_cache/dataset_data/data_10-shot_image_generation_.pkl +3 -0
- pwc_cache/dataset_data/data_10-shot_image_generation_Babies.pkl +3 -0
- pwc_cache/dataset_data/data_10-shot_image_generation_FQL-Driving.pkl +3 -0
- pwc_cache/dataset_data/data_10-shot_image_generation_FlyingThings3D.pkl +3 -0
- pwc_cache/dataset_data/data_10-shot_image_generation_MEAD.pkl +3 -0
- pwc_cache/dataset_data/data_10-shot_image_generation_Music21.pkl +3 -0
- pwc_cache/dataset_data/data_16k_ConceptNet.pkl +3 -0
- data_1_Image,_2_2_Stitchi_FQL-Driving.pkl β pwc_cache/dataset_data/data_1_Image,_2_2_Stitchi_FQL-Driving.pkl +0 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_Alibaba_Cluster_Trace.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_COCO-WholeBody.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-LL-E.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-LL-H.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-LL-N.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-OCN-A7M3.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-OCN-RICOH3.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_Human-Art.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_JHMDB_(2D_poses_only).pkl +3 -0
- pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_OCHuman.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_BDD100K_val.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_CLCXray.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_CeyMo.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_Clear_Weather.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_DUO.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_Dense_Fog.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_DroneVehicle.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_ETDII_Dataset.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_ExDark.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_FishEye8K.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_RADIATE.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_RF100.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_RTTS.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_RadioGalaxyNET_Dataset.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_SARDet-100K.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_SCoralDet_Dataset.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_TRR360D.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_TXL-PBC_a_freely_accessible_labeled_peripheral_blood_cell_dataset.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_UAV-PDD2023.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Object_Detection_UAVDB.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Panoptic_Segmentation_4D-OR.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Panoptic_Segmentation_MM-OR.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Panoptic_Segmentation_ScanNetV2.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Pose_Estimation_300W.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Pose_Estimation_Animal_Kingdom.pkl +3 -0
- pwc_cache/dataset_data/data_2D_Pose_Estimation_Desert_Locust.pkl +3 -0
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
plotly==6.1.2
|
2 |
+
pandas==2.3.0
|
3 |
+
tqdm==4.67.1
|
4 |
+
datasets==3.6.0
|
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.psd filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: PwCLeaderboardDisplay
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.43.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: PwCLeaderboardDisplay
|
3 |
+
emoji: πππ
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.43.1
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,994 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import pickle
|
4 |
+
from datetime import datetime
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
from datasets import load_dataset
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
# Cache configuration
|
14 |
+
global CACHE_DIR
|
15 |
+
global TASKS_INDEX_FILE
|
16 |
+
global TASK_DATA_DIR
|
17 |
+
global DATASET_DATA_DIR
|
18 |
+
global METRICS_INDEX_FILE
|
19 |
+
|
20 |
+
CACHE_DIR = Path("./pwc_cache")
|
21 |
+
CACHE_DIR.mkdir(exist_ok=True)
|
22 |
+
|
23 |
+
# Directory structure for disk-based storage
|
24 |
+
TASKS_INDEX_FILE = CACHE_DIR / "tasks_index.json" # Small JSON file with task list
|
25 |
+
TASK_DATA_DIR = CACHE_DIR / "task_data" # Directory for individual task files
|
26 |
+
DATASET_DATA_DIR = CACHE_DIR / "dataset_data" # Directory for individual dataset files
|
27 |
+
METRICS_INDEX_FILE = CACHE_DIR / "metrics_index.json" # Metrics metadata
|
28 |
+
|
29 |
+
# Create directories
|
30 |
+
TASK_DATA_DIR.mkdir(exist_ok=True)
|
31 |
+
DATASET_DATA_DIR.mkdir(exist_ok=True)
|
32 |
+
|
33 |
+
|
34 |
+
def sanitize_filename(name):
|
35 |
+
"""Convert a string to a safe filename."""
|
36 |
+
# Replace problematic characters with underscores
|
37 |
+
safe_name = name.replace('/', '_').replace('\\', '_').replace(':', '_')
|
38 |
+
safe_name = safe_name.replace('*', '_').replace('?', '_').replace('"', '_')
|
39 |
+
safe_name = safe_name.replace('<', '_').replace('>', '_').replace('|', '_')
|
40 |
+
safe_name = safe_name.replace(' ', '_').replace('.', '_')
|
41 |
+
# Remove multiple underscores and trim
|
42 |
+
safe_name = '_'.join(filter(None, safe_name.split('_')))
|
43 |
+
# Limit length to avoid filesystem issues
|
44 |
+
if len(safe_name) > 200:
|
45 |
+
# If too long, use first 150 chars + hash of full name
|
46 |
+
safe_name = safe_name[:150] + '_' + hashlib.md5(name.encode()).hexdigest()[:8]
|
47 |
+
return safe_name
|
48 |
+
|
49 |
+
|
50 |
+
def get_task_filename(task):
|
51 |
+
"""Generate a safe filename for a task."""
|
52 |
+
safe_name = sanitize_filename(task)
|
53 |
+
return TASK_DATA_DIR / f"task_{safe_name}.pkl"
|
54 |
+
|
55 |
+
|
56 |
+
def get_dataset_filename(task, dataset_name):
|
57 |
+
"""Generate a safe filename for a dataset."""
|
58 |
+
safe_task = sanitize_filename(task)
|
59 |
+
safe_dataset = sanitize_filename(dataset_name)
|
60 |
+
# Include both task and dataset in filename for clarity
|
61 |
+
filename = f"data_{safe_task}_{safe_dataset}.pkl"
|
62 |
+
# If combined name is too long, shorten it
|
63 |
+
if len(filename) > 255:
|
64 |
+
# Use shorter version with hash
|
65 |
+
filename = f"data_{safe_task[:50]}_{safe_dataset[:50]}_{hashlib.md5(f'{task}||{dataset_name}'.encode()).hexdigest()[:8]}.pkl"
|
66 |
+
return DATASET_DATA_DIR / filename
|
67 |
+
|
68 |
+
|
69 |
+
def cache_exists():
|
70 |
+
"""Check if cache structure exists."""
|
71 |
+
print(f"{TASKS_INDEX_FILE =}")
|
72 |
+
print(f"{METRICS_INDEX_FILE =}")
|
73 |
+
print(f"{TASKS_INDEX_FILE.exists() =}")
|
74 |
+
print(f"{METRICS_INDEX_FILE.exists() =}")
|
75 |
+
|
76 |
+
return TASKS_INDEX_FILE.exists() and METRICS_INDEX_FILE.exists()
|
77 |
+
|
78 |
+
|
79 |
+
def build_disk_based_cache():
|
80 |
+
"""Build cache with minimal memory usage - process dataset in streaming fashion."""
|
81 |
+
|
82 |
+
import os
|
83 |
+
print("Michael test", os.path.isdir("./pwc_cache"))
|
84 |
+
print("=" * 60)
|
85 |
+
|
86 |
+
|
87 |
+
print("=" * 60)
|
88 |
+
print("Building disk-based cache (one-time operation)...")
|
89 |
+
print("=" * 60)
|
90 |
+
|
91 |
+
# Initialize tracking structures (kept small)
|
92 |
+
tasks_set = set()
|
93 |
+
metrics_index = {}
|
94 |
+
|
95 |
+
print("\n[1/4] Streaming dataset and building cache...")
|
96 |
+
|
97 |
+
# Load dataset in streaming mode to save memory
|
98 |
+
ds = load_dataset("pwc-archive/evaluation-tables", split="train", streaming=False)
|
99 |
+
total_items = len(ds)
|
100 |
+
|
101 |
+
processed_count = 0
|
102 |
+
dataset_count = 0
|
103 |
+
|
104 |
+
for idx, item in tqdm(enumerate(ds), total=total_items):
|
105 |
+
# Progress indicator
|
106 |
+
|
107 |
+
task = item['task']
|
108 |
+
if not task:
|
109 |
+
continue
|
110 |
+
|
111 |
+
tasks_set.add(task)
|
112 |
+
|
113 |
+
# Load existing task data from disk or create new
|
114 |
+
task_file = get_task_filename(task)
|
115 |
+
if task_file.exists():
|
116 |
+
with open(task_file, 'rb') as f:
|
117 |
+
task_data = pickle.load(f)
|
118 |
+
else:
|
119 |
+
task_data = {
|
120 |
+
'categories': set(),
|
121 |
+
'datasets': set(),
|
122 |
+
'date_range': {'min': None, 'max': None}
|
123 |
+
}
|
124 |
+
|
125 |
+
# Update task data
|
126 |
+
if item['categories']:
|
127 |
+
task_data['categories'].update(item['categories'])
|
128 |
+
|
129 |
+
# Process datasets
|
130 |
+
if item['datasets']:
|
131 |
+
for dataset in item['datasets']:
|
132 |
+
if not isinstance(dataset, dict) or 'dataset' not in dataset:
|
133 |
+
continue
|
134 |
+
|
135 |
+
dataset_name = dataset['dataset']
|
136 |
+
dataset_file = get_dataset_filename(task, dataset_name)
|
137 |
+
|
138 |
+
# Skip if already processed
|
139 |
+
if dataset_file.exists():
|
140 |
+
task_data['datasets'].add(dataset_name)
|
141 |
+
continue
|
142 |
+
|
143 |
+
task_data['datasets'].add(dataset_name)
|
144 |
+
|
145 |
+
# Process SOTA data
|
146 |
+
if 'sota' not in dataset or 'rows' not in dataset['sota']:
|
147 |
+
continue
|
148 |
+
|
149 |
+
models_data = []
|
150 |
+
for row in dataset['sota']['rows']:
|
151 |
+
if not isinstance(row, dict):
|
152 |
+
continue
|
153 |
+
|
154 |
+
model_name = row.get('model_name', 'Unknown Model')
|
155 |
+
|
156 |
+
# Extract metrics
|
157 |
+
metrics = {}
|
158 |
+
if 'metrics' in row and isinstance(row['metrics'], dict):
|
159 |
+
for metric_name, metric_value in row['metrics'].items():
|
160 |
+
if metric_value is not None:
|
161 |
+
metrics[metric_name] = metric_value
|
162 |
+
# Track metric metadata
|
163 |
+
if metric_name not in metrics_index:
|
164 |
+
metrics_index[metric_name] = {
|
165 |
+
'count': 0,
|
166 |
+
'is_lower_better': any(kw in metric_name.lower()
|
167 |
+
for kw in ['error', 'loss', 'time', 'cost'])
|
168 |
+
}
|
169 |
+
metrics_index[metric_name]['count'] += 1
|
170 |
+
|
171 |
+
# Parse date
|
172 |
+
paper_date = row.get('paper_date')
|
173 |
+
try:
|
174 |
+
if paper_date and isinstance(paper_date, str):
|
175 |
+
release_date = pd.to_datetime(paper_date)
|
176 |
+
else:
|
177 |
+
release_date = pd.to_datetime('2020-01-01')
|
178 |
+
except:
|
179 |
+
release_date = pd.to_datetime('2020-01-01')
|
180 |
+
|
181 |
+
# Update date range
|
182 |
+
if task_data['date_range']['min'] is None or release_date < task_data['date_range']['min']:
|
183 |
+
task_data['date_range']['min'] = release_date
|
184 |
+
if task_data['date_range']['max'] is None or release_date > task_data['date_range']['max']:
|
185 |
+
task_data['date_range']['max'] = release_date
|
186 |
+
|
187 |
+
# Build model entry
|
188 |
+
model_entry = {
|
189 |
+
'model_name': model_name,
|
190 |
+
'release_date': release_date,
|
191 |
+
'paper_date': row.get('paper_date', ''), # Store raw paper_date for dynamic parsing
|
192 |
+
'paper_url': row.get('paper_url', ''),
|
193 |
+
'paper_title': row.get('paper_title', ''),
|
194 |
+
'code_url': row.get('code_links', [''])[0] if row.get('code_links') else '',
|
195 |
+
**metrics
|
196 |
+
}
|
197 |
+
|
198 |
+
models_data.append(model_entry)
|
199 |
+
|
200 |
+
if models_data:
|
201 |
+
df = pd.DataFrame(models_data)
|
202 |
+
df = df.sort_values('release_date')
|
203 |
+
|
204 |
+
# Save dataset to its own file
|
205 |
+
with open(dataset_file, 'wb') as f:
|
206 |
+
pickle.dump(df, f, protocol=pickle.HIGHEST_PROTOCOL)
|
207 |
+
|
208 |
+
dataset_count += 1
|
209 |
+
|
210 |
+
# Clear DataFrame from memory
|
211 |
+
del df
|
212 |
+
del models_data
|
213 |
+
|
214 |
+
# Save updated task data back to disk
|
215 |
+
with open(task_file, 'wb') as f:
|
216 |
+
# Convert sets to lists for serialization
|
217 |
+
task_data_to_save = {
|
218 |
+
'categories': sorted(list(task_data['categories'])),
|
219 |
+
'datasets': sorted(list(task_data['datasets'])),
|
220 |
+
'date_range': task_data['date_range']
|
221 |
+
}
|
222 |
+
pickle.dump(task_data_to_save, f, protocol=pickle.HIGHEST_PROTOCOL)
|
223 |
+
|
224 |
+
# Clear task data from memory
|
225 |
+
del task_data
|
226 |
+
processed_count += 1
|
227 |
+
|
228 |
+
print(f"\nβ Processed {len(tasks_set)} tasks and {dataset_count} datasets")
|
229 |
+
|
230 |
+
print("\n[2/4] Saving index files...")
|
231 |
+
|
232 |
+
# Save tasks index (small file)
|
233 |
+
tasks_list = sorted(list(tasks_set))
|
234 |
+
with open(TASKS_INDEX_FILE, 'w') as f:
|
235 |
+
json.dump(tasks_list, f)
|
236 |
+
print(f" β Saved tasks index ({len(tasks_list)} tasks)")
|
237 |
+
|
238 |
+
# Save metrics index
|
239 |
+
with open(METRICS_INDEX_FILE, 'w') as f:
|
240 |
+
json.dump(metrics_index, f, indent=2)
|
241 |
+
print(f" β Saved metrics index ({len(metrics_index)} metrics)")
|
242 |
+
|
243 |
+
print("\n[3/4] Calculating cache statistics...")
|
244 |
+
|
245 |
+
# Calculate total cache size
|
246 |
+
total_size = 0
|
247 |
+
for file in TASK_DATA_DIR.glob("*.pkl"):
|
248 |
+
total_size += file.stat().st_size
|
249 |
+
for file in DATASET_DATA_DIR.glob("*.pkl"):
|
250 |
+
total_size += file.stat().st_size
|
251 |
+
|
252 |
+
print(f" β Total cache size: {total_size / 1024 / 1024:.1f} MB")
|
253 |
+
print(f" β Task files: {len(list(TASK_DATA_DIR.glob('*.pkl')))}")
|
254 |
+
print(f" β Dataset files: {len(list(DATASET_DATA_DIR.glob('*.pkl')))}")
|
255 |
+
|
256 |
+
print("\n[4/4] Cache building complete!")
|
257 |
+
print("=" * 60)
|
258 |
+
|
259 |
+
return tasks_list
|
260 |
+
|
261 |
+
|
262 |
+
def load_tasks_index():
|
263 |
+
"""Load just the task list from disk."""
|
264 |
+
with open(TASKS_INDEX_FILE, 'r') as f:
|
265 |
+
return json.load(f)
|
266 |
+
|
267 |
+
|
268 |
+
def load_task_data(task):
|
269 |
+
"""Load data for a specific task from disk."""
|
270 |
+
task_file = get_task_filename(task)
|
271 |
+
if task_file.exists():
|
272 |
+
with open(task_file, 'rb') as f:
|
273 |
+
return pickle.load(f)
|
274 |
+
return None
|
275 |
+
|
276 |
+
|
277 |
+
def load_dataset_data(task, dataset_name):
|
278 |
+
"""Load a specific dataset from disk."""
|
279 |
+
dataset_file = get_dataset_filename(task, dataset_name)
|
280 |
+
if dataset_file.exists():
|
281 |
+
with open(dataset_file, 'rb') as f:
|
282 |
+
return pickle.load(f)
|
283 |
+
return pd.DataFrame()
|
284 |
+
|
285 |
+
|
286 |
+
def load_metrics_index():
|
287 |
+
"""Load metrics index from disk."""
|
288 |
+
if METRICS_INDEX_FILE.exists():
|
289 |
+
with open(METRICS_INDEX_FILE, 'r') as f:
|
290 |
+
return json.load(f)
|
291 |
+
return {}
|
292 |
+
|
293 |
+
# Initialize - build cache if doesn't exist
|
294 |
+
if cache_exists():
|
295 |
+
print("Loading task index from disk...")
|
296 |
+
TASKS = load_tasks_index()
|
297 |
+
print(f"β Loaded {len(TASKS)} tasks")
|
298 |
+
else:
|
299 |
+
TASKS = build_disk_based_cache()
|
300 |
+
|
301 |
+
# Load metrics index once (it's small)
|
302 |
+
METRICS_INDEX = load_metrics_index()
|
303 |
+
|
304 |
+
|
305 |
+
# Memory-efficient accessor functions
|
306 |
+
def get_tasks():
|
307 |
+
"""Get all tasks from index."""
|
308 |
+
return TASKS
|
309 |
+
|
310 |
+
|
311 |
+
def get_task_data(task):
|
312 |
+
"""Load task data from disk on-demand."""
|
313 |
+
return load_task_data(task)
|
314 |
+
|
315 |
+
|
316 |
+
def get_categories(task):
|
317 |
+
"""Get categories for a task (loads from disk)."""
|
318 |
+
task_data = get_task_data(task)
|
319 |
+
return task_data['categories'] if task_data else []
|
320 |
+
|
321 |
+
|
322 |
+
def get_datasets_for_task(task):
|
323 |
+
"""Get datasets for a task (loads from disk)."""
|
324 |
+
task_data = get_task_data(task)
|
325 |
+
return task_data['datasets'] if task_data else []
|
326 |
+
|
327 |
+
|
328 |
+
def get_cached_model_data(task, dataset_name):
|
329 |
+
"""Load dataset from disk on-demand."""
|
330 |
+
return load_dataset_data(task, dataset_name)
|
331 |
+
|
332 |
+
|
333 |
+
def parse_paper_date(paper_date, paper_title="", paper_url=""):
|
334 |
+
"""Parse paper date with improved fallback strategies."""
|
335 |
+
import re
|
336 |
+
|
337 |
+
# Try to parse the raw paper_date if available
|
338 |
+
if paper_date and isinstance(paper_date, str) and paper_date.strip():
|
339 |
+
try:
|
340 |
+
# Try common date formats
|
341 |
+
date_formats = [
|
342 |
+
'%Y-%m-%d',
|
343 |
+
'%Y/%m/%d',
|
344 |
+
'%d-%m-%Y',
|
345 |
+
'%d/%m/%Y',
|
346 |
+
'%Y-%m',
|
347 |
+
'%Y/%m',
|
348 |
+
'%Y'
|
349 |
+
]
|
350 |
+
|
351 |
+
for fmt in date_formats:
|
352 |
+
try:
|
353 |
+
return pd.to_datetime(paper_date.strip(), format=fmt)
|
354 |
+
except:
|
355 |
+
continue
|
356 |
+
|
357 |
+
# Try pandas automatic parsing
|
358 |
+
return pd.to_datetime(paper_date.strip())
|
359 |
+
except:
|
360 |
+
pass
|
361 |
+
|
362 |
+
# Fallback: try to extract year from paper title or URL
|
363 |
+
year_pattern = r'\b(19[5-9]\d|20[0-9]\d)\b' # Match 1950-2099
|
364 |
+
|
365 |
+
# Look for year in paper title
|
366 |
+
if paper_title:
|
367 |
+
years = re.findall(year_pattern, str(paper_title))
|
368 |
+
if years:
|
369 |
+
try:
|
370 |
+
year = max(years) # Use the latest year found
|
371 |
+
return pd.to_datetime(f'{year}-01-01')
|
372 |
+
except:
|
373 |
+
pass
|
374 |
+
|
375 |
+
# Look for year in paper URL
|
376 |
+
if paper_url:
|
377 |
+
years = re.findall(year_pattern, str(paper_url))
|
378 |
+
if years:
|
379 |
+
try:
|
380 |
+
year = max(years) # Use the latest year found
|
381 |
+
return pd.to_datetime(f'{year}-01-01')
|
382 |
+
except:
|
383 |
+
pass
|
384 |
+
|
385 |
+
# Final fallback: return None instead of a default year
|
386 |
+
return None
|
387 |
+
|
388 |
+
|
389 |
+
def get_task_statistics(task):
|
390 |
+
"""Get statistics about a task."""
|
391 |
+
return {}
|
392 |
+
|
393 |
+
|
394 |
+
def create_sota_plot(df, metric):
|
395 |
+
"""Create a plot showing model performance evolution over time.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
df: DataFrame with model data
|
399 |
+
metric: Metric name to plot on y-axis
|
400 |
+
"""
|
401 |
+
if df.empty or metric not in df.columns:
|
402 |
+
fig = go.Figure()
|
403 |
+
fig.add_annotation(
|
404 |
+
text="No data available for this metric",
|
405 |
+
xref="paper",
|
406 |
+
yref="paper",
|
407 |
+
x=0.5,
|
408 |
+
y=0.5,
|
409 |
+
showarrow=False,
|
410 |
+
font=dict(size=20)
|
411 |
+
)
|
412 |
+
fig.update_layout(
|
413 |
+
title="No Data Available",
|
414 |
+
height=600,
|
415 |
+
plot_bgcolor='white',
|
416 |
+
paper_bgcolor='white'
|
417 |
+
)
|
418 |
+
return fig
|
419 |
+
|
420 |
+
# Remove rows where the metric is NaN
|
421 |
+
df_clean = df.dropna(subset=[metric]).copy()
|
422 |
+
|
423 |
+
if df_clean.empty:
|
424 |
+
fig = go.Figure()
|
425 |
+
fig.add_annotation(
|
426 |
+
text="No valid data points for this metric",
|
427 |
+
xref="paper",
|
428 |
+
yref="paper",
|
429 |
+
x=0.5,
|
430 |
+
y=0.5,
|
431 |
+
showarrow=False,
|
432 |
+
font=dict(size=20)
|
433 |
+
)
|
434 |
+
fig.update_layout(
|
435 |
+
title="No Data Available",
|
436 |
+
height=600,
|
437 |
+
plot_bgcolor='white',
|
438 |
+
paper_bgcolor='white'
|
439 |
+
)
|
440 |
+
return fig
|
441 |
+
|
442 |
+
# Convert metric column to numeric, handling any string values
|
443 |
+
try:
|
444 |
+
df_clean[metric] = pd.to_numeric(
|
445 |
+
df_clean[metric].apply(lambda x: x.strip()[:-1] if isinstance(x, str) and x.strip().endswith("%") else x),
|
446 |
+
errors='coerce')
|
447 |
+
# Remove any rows that couldn't be converted to numeric
|
448 |
+
df_clean = df_clean.dropna(subset=[metric])
|
449 |
+
|
450 |
+
if df_clean.empty:
|
451 |
+
fig = go.Figure()
|
452 |
+
fig.add_annotation(
|
453 |
+
text=f"No numeric data available for metric: {metric}",
|
454 |
+
xref="paper",
|
455 |
+
yref="paper",
|
456 |
+
x=0.5,
|
457 |
+
y=0.5,
|
458 |
+
showarrow=False,
|
459 |
+
font=dict(size=20)
|
460 |
+
)
|
461 |
+
fig.update_layout(
|
462 |
+
title="No Numeric Data Available",
|
463 |
+
height=600,
|
464 |
+
plot_bgcolor='white',
|
465 |
+
paper_bgcolor='white'
|
466 |
+
)
|
467 |
+
return fig
|
468 |
+
|
469 |
+
except Exception as e:
|
470 |
+
fig = go.Figure()
|
471 |
+
fig.add_annotation(
|
472 |
+
text=f"Error processing metric data: {str(e)}",
|
473 |
+
xref="paper",
|
474 |
+
yref="paper",
|
475 |
+
x=0.5,
|
476 |
+
y=0.5,
|
477 |
+
showarrow=False,
|
478 |
+
font=dict(size=16)
|
479 |
+
)
|
480 |
+
fig.update_layout(
|
481 |
+
title="Data Processing Error",
|
482 |
+
height=600,
|
483 |
+
plot_bgcolor='white',
|
484 |
+
paper_bgcolor='white'
|
485 |
+
)
|
486 |
+
return fig
|
487 |
+
|
488 |
+
# Recalculate release dates dynamically from raw paper_date if available
|
489 |
+
df_processed = df_clean.copy()
|
490 |
+
if 'paper_date' in df_processed.columns:
|
491 |
+
# Parse dates dynamically using improved logic
|
492 |
+
df_processed['dynamic_release_date'] = df_processed.apply(
|
493 |
+
lambda row: parse_paper_date(
|
494 |
+
row.get('paper_date', ''),
|
495 |
+
row.get('paper_title', ''),
|
496 |
+
row.get('paper_url', '')
|
497 |
+
), axis=1
|
498 |
+
)
|
499 |
+
# Use dynamic dates if available, otherwise fallback to original release_date
|
500 |
+
df_processed['final_release_date'] = df_processed['dynamic_release_date'].fillna(df_processed['release_date'])
|
501 |
+
else:
|
502 |
+
# If no paper_date column, use existing release_date
|
503 |
+
df_processed['final_release_date'] = df_processed['release_date']
|
504 |
+
|
505 |
+
# Filter out rows with no valid date
|
506 |
+
df_with_dates = df_processed[df_processed['final_release_date'].notna()].copy()
|
507 |
+
|
508 |
+
if df_with_dates.empty:
|
509 |
+
# If no valid dates, return empty plot
|
510 |
+
fig = go.Figure()
|
511 |
+
fig.add_annotation(
|
512 |
+
text="No valid dates available for this dataset",
|
513 |
+
xref="paper",
|
514 |
+
yref="paper",
|
515 |
+
x=0.5,
|
516 |
+
y=0.5,
|
517 |
+
showarrow=False,
|
518 |
+
font=dict(size=20)
|
519 |
+
)
|
520 |
+
fig.update_layout(
|
521 |
+
title="No Date Data Available",
|
522 |
+
height=600,
|
523 |
+
plot_bgcolor='white',
|
524 |
+
paper_bgcolor='white'
|
525 |
+
)
|
526 |
+
return fig
|
527 |
+
|
528 |
+
# Sort by final release date
|
529 |
+
df_sorted = df_with_dates.sort_values('final_release_date').copy()
|
530 |
+
|
531 |
+
# Check if metric is lower-better
|
532 |
+
is_lower_better = False
|
533 |
+
if metric in METRICS_INDEX:
|
534 |
+
is_lower_better = METRICS_INDEX[metric].get('is_lower_better', False)
|
535 |
+
else:
|
536 |
+
is_lower_better = any(keyword in metric.lower() for keyword in ['error', 'loss', 'time', 'cost'])
|
537 |
+
|
538 |
+
if is_lower_better:
|
539 |
+
df_sorted['cumulative_best'] = df_sorted[metric].cummin()
|
540 |
+
df_sorted['is_sota'] = df_sorted[metric] == df_sorted['cumulative_best']
|
541 |
+
else:
|
542 |
+
df_sorted['cumulative_best'] = df_sorted[metric].cummax()
|
543 |
+
df_sorted['is_sota'] = df_sorted[metric] == df_sorted['cumulative_best']
|
544 |
+
|
545 |
+
# Get SOTA models
|
546 |
+
sota_df = df_sorted[df_sorted['is_sota']].copy()
|
547 |
+
|
548 |
+
# Use the dynamically calculated dates for x-axis
|
549 |
+
x_values = df_sorted['final_release_date']
|
550 |
+
x_axis_title = 'Release Date'
|
551 |
+
|
552 |
+
# Create the plot
|
553 |
+
fig = go.Figure()
|
554 |
+
|
555 |
+
# Add all models as scatter points
|
556 |
+
fig.add_trace(go.Scatter(
|
557 |
+
x=x_values,
|
558 |
+
y=df_sorted[metric],
|
559 |
+
mode='markers',
|
560 |
+
name='All models',
|
561 |
+
marker=dict(
|
562 |
+
color=['#00CED1' if is_sota else 'lightgray'
|
563 |
+
for is_sota in df_sorted['is_sota']],
|
564 |
+
size=8,
|
565 |
+
opacity=0.7
|
566 |
+
),
|
567 |
+
text=df_sorted['model_name'],
|
568 |
+
customdata=df_sorted[['paper_title', 'paper_url', 'code_url']],
|
569 |
+
hovertemplate='<b>%{text}</b><br>' +
|
570 |
+
f'{metric}: %{{y:.4f}}<br>' +
|
571 |
+
'Date: %{x}<br>' +
|
572 |
+
'Paper: %{customdata[0]}<br>' +
|
573 |
+
'<extra></extra>'
|
574 |
+
))
|
575 |
+
|
576 |
+
# Add SOTA line
|
577 |
+
fig.add_trace(go.Scatter(
|
578 |
+
x=x_values,
|
579 |
+
y=df_sorted['cumulative_best'],
|
580 |
+
mode='lines',
|
581 |
+
name=f'SOTA (cumulative {"min" if is_lower_better else "max"})',
|
582 |
+
line=dict(color='#00CED1', width=2, dash='solid'),
|
583 |
+
hovertemplate=f'SOTA {metric}: %{{y:.4f}}<br>{x_axis_title}: %{{x}}<extra></extra>'
|
584 |
+
))
|
585 |
+
|
586 |
+
# Add labels for SOTA models
|
587 |
+
if not sota_df.empty:
|
588 |
+
# Calculate dynamic offset based on data range
|
589 |
+
y_range = df_sorted[metric].max() - df_sorted[metric].min()
|
590 |
+
|
591 |
+
# Use a percentage of the range for offset, with minimum and maximum bounds
|
592 |
+
if y_range > 0:
|
593 |
+
base_offset = y_range * 0.03 # 3% of the data range
|
594 |
+
# Ensure minimum offset for readability and maximum to prevent excessive spacing
|
595 |
+
label_offset = max(y_range * 0.01, min(base_offset, y_range * 0.08))
|
596 |
+
else:
|
597 |
+
# Fallback for when all values are the same
|
598 |
+
label_offset = 1
|
599 |
+
|
600 |
+
# Track label positions to prevent overlaps
|
601 |
+
previous_labels = []
|
602 |
+
# For date-based x-axis, use date separation
|
603 |
+
try:
|
604 |
+
date_range = (df_sorted['final_release_date'].max() - df_sorted['final_release_date'].min()).days
|
605 |
+
min_separation = max(30, date_range * 0.05) # Minimum 30 days or 5% of range
|
606 |
+
except (TypeError, AttributeError):
|
607 |
+
# Fallback if date calculation fails
|
608 |
+
min_separation = 30
|
609 |
+
|
610 |
+
for i, (_, row) in enumerate(sota_df.iterrows()):
|
611 |
+
# Determine base label position based on metric type
|
612 |
+
if is_lower_better:
|
613 |
+
# For lower-better metrics, place label above the point (negative ay)
|
614 |
+
base_ay_offset = -label_offset
|
615 |
+
base_yshift = -8
|
616 |
+
alternate_multiplier = -1
|
617 |
+
else:
|
618 |
+
# For higher-better metrics, place label below the point (positive ay)
|
619 |
+
base_ay_offset = label_offset
|
620 |
+
base_yshift = 8
|
621 |
+
alternate_multiplier = 1
|
622 |
+
|
623 |
+
# Check for collision with previous labels
|
624 |
+
current_x = row['final_release_date']
|
625 |
+
collision_detected = False
|
626 |
+
|
627 |
+
for prev_x, prev_ay in previous_labels:
|
628 |
+
try:
|
629 |
+
x_diff = abs((current_x - prev_x).days)
|
630 |
+
if x_diff < min_separation:
|
631 |
+
collision_detected = True
|
632 |
+
break
|
633 |
+
except (TypeError, AttributeError):
|
634 |
+
# Skip collision detection if calculation fails
|
635 |
+
continue
|
636 |
+
|
637 |
+
# Adjust position if collision detected
|
638 |
+
if collision_detected:
|
639 |
+
# Alternate the label position (above/below) to avoid overlap
|
640 |
+
ay_offset = base_ay_offset + (alternate_multiplier * label_offset * 0.7 * (i % 2))
|
641 |
+
yshift = base_yshift + (alternate_multiplier * 12 * (i % 2))
|
642 |
+
else:
|
643 |
+
ay_offset = base_ay_offset
|
644 |
+
yshift = base_yshift
|
645 |
+
|
646 |
+
# Add the annotation
|
647 |
+
fig.add_annotation(
|
648 |
+
x=current_x,
|
649 |
+
y=row[metric],
|
650 |
+
text=row['model_name'][:25] + '...' if len(row['model_name']) > 25 else row['model_name'],
|
651 |
+
showarrow=True,
|
652 |
+
arrowhead=2,
|
653 |
+
arrowsize=1,
|
654 |
+
arrowwidth=1,
|
655 |
+
arrowcolor='#00CED1', # Match the SOTA line color
|
656 |
+
ax=0,
|
657 |
+
ay=ay_offset, # Dynamic offset based on data range and collision detection
|
658 |
+
yshift=yshift, # Fine-tune positioning
|
659 |
+
font=dict(size=8, color='#333333'),
|
660 |
+
bgcolor='rgba(255, 255, 255, 0.9)', # Semi-transparent background
|
661 |
+
borderwidth=0 # Remove border
|
662 |
+
)
|
663 |
+
|
664 |
+
# Track this label position
|
665 |
+
previous_labels.append((current_x, ay_offset))
|
666 |
+
|
667 |
+
# Update layout
|
668 |
+
fig.update_layout(
|
669 |
+
title=f'SOTA Evolution: {metric}',
|
670 |
+
xaxis_title=x_axis_title,
|
671 |
+
yaxis_title=metric,
|
672 |
+
xaxis=dict(showgrid=True, gridcolor='lightgray'),
|
673 |
+
yaxis=dict(showgrid=True, gridcolor='lightgray'),
|
674 |
+
plot_bgcolor='white',
|
675 |
+
paper_bgcolor='white',
|
676 |
+
height=600,
|
677 |
+
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01),
|
678 |
+
hovermode='closest'
|
679 |
+
)
|
680 |
+
|
681 |
+
# Clear the DataFrame from memory after plotting
|
682 |
+
del df_clean
|
683 |
+
del df_sorted
|
684 |
+
del sota_df
|
685 |
+
|
686 |
+
return fig
|
687 |
+
|
688 |
+
|
689 |
+
# Gradio interface
|
690 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
691 |
+
gr.Markdown("# π Papers with Code - SOTA Evolution Visualizer")
|
692 |
+
gr.Markdown(
|
693 |
+
"Navigate through ML tasks and datasets to visualize the evolution of state-of-the-art models over time.")
|
694 |
+
gr.Markdown("*Optimized for low memory usage - data is loaded on-demand from disk*")
|
695 |
+
|
696 |
+
# Status
|
697 |
+
with gr.Row():
|
698 |
+
gr.Markdown(f"""
|
699 |
+
<div style="background-color: #f0f9ff; border-left: 4px solid #00CED1; padding: 10px; margin: 10px 0;">
|
700 |
+
<b>πΎ Disk-Based Storage Active</b><br>
|
701 |
+
β’ <b>{len(TASKS)}</b> tasks indexed<br>
|
702 |
+
β’ <b>{len(METRICS_INDEX)}</b> unique metrics tracked<br>
|
703 |
+
β’ Data loaded on-demand to minimize RAM usage
|
704 |
+
</div>
|
705 |
+
""")
|
706 |
+
|
707 |
+
# State variables
|
708 |
+
current_df = gr.State(pd.DataFrame())
|
709 |
+
current_task = gr.State(None)
|
710 |
+
|
711 |
+
# Navigation dropdowns
|
712 |
+
with gr.Row():
|
713 |
+
task_dropdown = gr.Dropdown(
|
714 |
+
choices=get_tasks(),
|
715 |
+
label="Select Task",
|
716 |
+
interactive=True
|
717 |
+
)
|
718 |
+
category_dropdown = gr.Dropdown(
|
719 |
+
choices=[],
|
720 |
+
label="Categories (info only)",
|
721 |
+
interactive=False
|
722 |
+
)
|
723 |
+
|
724 |
+
with gr.Row():
|
725 |
+
dataset_dropdown = gr.Dropdown(
|
726 |
+
choices=[],
|
727 |
+
label="Select Dataset",
|
728 |
+
interactive=True
|
729 |
+
)
|
730 |
+
metric_dropdown = gr.Dropdown(
|
731 |
+
choices=[],
|
732 |
+
label="Select Metric",
|
733 |
+
interactive=True
|
734 |
+
)
|
735 |
+
|
736 |
+
# Info display
|
737 |
+
info_text = gr.Markdown("π Please select a task to begin")
|
738 |
+
|
739 |
+
# Plot
|
740 |
+
plot = gr.Plot(label="SOTA Evolution")
|
741 |
+
|
742 |
+
# Data display
|
743 |
+
with gr.Row():
|
744 |
+
show_data_btn = gr.Button("π Show/Hide Model Data")
|
745 |
+
export_btn = gr.Button("πΎ Export Current Data (CSV)")
|
746 |
+
clear_memory_btn = gr.Button("π§Ή Clear Memory", variant="secondary")
|
747 |
+
|
748 |
+
df_display = gr.Dataframe(
|
749 |
+
label="Model Data",
|
750 |
+
visible=False
|
751 |
+
)
|
752 |
+
|
753 |
+
|
754 |
+
# Update functions
|
755 |
+
def update_task_selection(task):
|
756 |
+
"""Update dropdowns when task is selected."""
|
757 |
+
if not task:
|
758 |
+
return [], [], [], "π Please select a task to begin", pd.DataFrame(), None, None
|
759 |
+
|
760 |
+
# Load task data from disk
|
761 |
+
categories = get_categories(task)
|
762 |
+
datasets = get_datasets_for_task(task)
|
763 |
+
|
764 |
+
info = f"### π **Task:** {task}\n"
|
765 |
+
if categories:
|
766 |
+
info += f"- **Categories:** {', '.join(categories[:3])}{'...' if len(categories) > 3 else ''} ({len(categories)} total)\n"
|
767 |
+
|
768 |
+
return (
|
769 |
+
gr.Dropdown(choices=categories, value=categories[0] if categories else None),
|
770 |
+
gr.Dropdown(choices=datasets, value=None),
|
771 |
+
gr.Dropdown(choices=[], value=None),
|
772 |
+
info,
|
773 |
+
pd.DataFrame(),
|
774 |
+
None,
|
775 |
+
task # Store current task
|
776 |
+
)
|
777 |
+
|
778 |
+
|
779 |
+
def update_dataset_selection(task, dataset_name):
|
780 |
+
"""Update when dataset is selected - loads from disk."""
|
781 |
+
if not task or not dataset_name:
|
782 |
+
return [], "", pd.DataFrame(), None
|
783 |
+
|
784 |
+
# Load dataset from disk
|
785 |
+
df = get_cached_model_data(task, dataset_name)
|
786 |
+
|
787 |
+
if df.empty:
|
788 |
+
return [], f"β οΈ No models found for dataset: {dataset_name}", df, None
|
789 |
+
|
790 |
+
# Get metric columns
|
791 |
+
exclude_cols = ['model_name', 'release_date', 'paper_date', 'paper_url', 'paper_title', 'code_url']
|
792 |
+
metric_cols = [col for col in df.columns if col not in exclude_cols]
|
793 |
+
|
794 |
+
info = f"### π **Dataset:** {dataset_name}\n"
|
795 |
+
info += f"- **Models:** {len(df)} models\n"
|
796 |
+
info += f"- **Metrics:** {len(metric_cols)} metrics available\n"
|
797 |
+
if not df.empty:
|
798 |
+
info += f"- **Date Range:** {df['release_date'].min().strftime('%Y-%m-%d')} to {df['release_date'].max().strftime('%Y-%m-%d')}\n"
|
799 |
+
|
800 |
+
if metric_cols:
|
801 |
+
info += f"- **Available Metrics:** {', '.join(metric_cols[:5])}{'...' if len(metric_cols) > 5 else ''}"
|
802 |
+
|
803 |
+
return (
|
804 |
+
gr.Dropdown(choices=metric_cols, value=metric_cols[0] if metric_cols else None),
|
805 |
+
info,
|
806 |
+
df,
|
807 |
+
None
|
808 |
+
)
|
809 |
+
|
810 |
+
|
811 |
+
def update_plot(df, metric):
|
812 |
+
"""Update plot when metric is selected."""
|
813 |
+
if df.empty or not metric:
|
814 |
+
return None
|
815 |
+
plot_result = create_sota_plot(df, metric)
|
816 |
+
return plot_result
|
817 |
+
|
818 |
+
|
819 |
+
def toggle_dataframe(df):
|
820 |
+
"""Toggle dataframe visibility."""
|
821 |
+
if df.empty:
|
822 |
+
return gr.Dataframe(value=pd.DataFrame(), visible=False)
|
823 |
+
# Show relevant columns
|
824 |
+
display_cols = ['model_name', 'release_date'] + [col for col in df.columns
|
825 |
+
if col not in ['model_name', 'release_date', 'paper_date',
|
826 |
+
'paper_url',
|
827 |
+
'paper_title', 'code_url']]
|
828 |
+
display_df = df[display_cols].copy()
|
829 |
+
display_df['release_date'] = display_df['release_date'].dt.strftime('%Y-%m-%d')
|
830 |
+
return gr.Dataframe(value=display_df, visible=True)
|
831 |
+
|
832 |
+
|
833 |
+
def export_data(df):
|
834 |
+
"""Export current dataframe to CSV."""
|
835 |
+
if df.empty:
|
836 |
+
return "β οΈ No data to export"
|
837 |
+
|
838 |
+
filename = f"sota_export_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
839 |
+
df.to_csv(filename, index=False)
|
840 |
+
return f"β
Data exported to {filename} ({len(df)} models)"
|
841 |
+
|
842 |
+
|
843 |
+
def clear_memory():
|
844 |
+
"""Clear memory by forcing garbage collection."""
|
845 |
+
import gc
|
846 |
+
gc.collect()
|
847 |
+
return "β
Memory cleared"
|
848 |
+
|
849 |
+
|
850 |
+
# Event handlers
|
851 |
+
task_dropdown.change(
|
852 |
+
fn=update_task_selection,
|
853 |
+
inputs=task_dropdown,
|
854 |
+
outputs=[category_dropdown, dataset_dropdown,
|
855 |
+
metric_dropdown, info_text, current_df, plot, current_task]
|
856 |
+
)
|
857 |
+
|
858 |
+
dataset_dropdown.change(
|
859 |
+
fn=update_dataset_selection,
|
860 |
+
inputs=[task_dropdown, dataset_dropdown],
|
861 |
+
outputs=[metric_dropdown, info_text, current_df, plot]
|
862 |
+
)
|
863 |
+
|
864 |
+
metric_dropdown.change(
|
865 |
+
fn=update_plot,
|
866 |
+
inputs=[current_df, metric_dropdown],
|
867 |
+
outputs=plot
|
868 |
+
)
|
869 |
+
|
870 |
+
show_data_btn.click(
|
871 |
+
fn=toggle_dataframe,
|
872 |
+
inputs=current_df,
|
873 |
+
outputs=df_display
|
874 |
+
)
|
875 |
+
|
876 |
+
export_btn.click(
|
877 |
+
fn=export_data,
|
878 |
+
inputs=current_df,
|
879 |
+
outputs=info_text
|
880 |
+
)
|
881 |
+
|
882 |
+
clear_memory_btn.click(
|
883 |
+
fn=clear_memory,
|
884 |
+
inputs=[],
|
885 |
+
outputs=info_text
|
886 |
+
)
|
887 |
+
|
888 |
+
gr.Markdown("""
|
889 |
+
---
|
890 |
+
### π How to Use
|
891 |
+
1. **Select a Task** from the first dropdown
|
892 |
+
2. **Select a Dataset** to analyze
|
893 |
+
3. **Select a Metric** to visualize
|
894 |
+
4. The plot shows SOTA model evolution over time with dynamically calculated dates
|
895 |
+
|
896 |
+
### πΎ Memory Optimization
|
897 |
+
- Data is stored on disk and loaded on-demand
|
898 |
+
- Only the current task and dataset are kept in memory
|
899 |
+
- Use "Clear Memory" button if needed
|
900 |
+
- Infinite disk space is utilized for permanent caching
|
901 |
+
|
902 |
+
### π¨ Plot Features
|
903 |
+
- **π΅ Cyan dots**: SOTA models when released
|
904 |
+
- **βͺ Gray dots**: Other models
|
905 |
+
- **π Cyan line**: SOTA progression
|
906 |
+
- **π Hover**: View model details
|
907 |
+
- **π·οΈ Smart Labels**: SOTA model labels positioned close to the line with intelligent collision detection
|
908 |
+
""")
|
909 |
+
|
910 |
+
|
911 |
+
def test_sota_label_positioning():
|
912 |
+
"""Test function to validate SOTA label positioning improvements."""
|
913 |
+
print("π§ͺ Testing SOTA label positioning...")
|
914 |
+
|
915 |
+
# Create sample data for testing
|
916 |
+
import pandas as pd
|
917 |
+
from datetime import datetime
|
918 |
+
|
919 |
+
# Test data with different metric types (including all required columns)
|
920 |
+
test_data = {
|
921 |
+
'model_name': ['Model A', 'Model B', 'Model C', 'Model D'],
|
922 |
+
'release_date': [
|
923 |
+
datetime(2020, 1, 1),
|
924 |
+
datetime(2020, 6, 1),
|
925 |
+
datetime(2021, 1, 1),
|
926 |
+
datetime(2021, 6, 1)
|
927 |
+
],
|
928 |
+
'paper_title': ['Paper A', 'Paper B', 'Paper C', 'Paper D'],
|
929 |
+
'paper_url': ['http://example.com/a', 'http://example.com/b', 'http://example.com/c', 'http://example.com/d'],
|
930 |
+
'code_url': ['http://github.com/a', 'http://github.com/b', 'http://github.com/c', 'http://github.com/d'],
|
931 |
+
'accuracy': [0.85, 0.87, 0.90, 0.92], # Higher-better metric
|
932 |
+
'error_rate': [0.15, 0.13, 0.10, 0.08] # Lower-better metric
|
933 |
+
}
|
934 |
+
|
935 |
+
df_test = pd.DataFrame(test_data)
|
936 |
+
|
937 |
+
# Test with higher-better metric (accuracy)
|
938 |
+
print(" Testing with higher-better metric (accuracy)...")
|
939 |
+
try:
|
940 |
+
fig1 = create_sota_plot(df_test, 'accuracy')
|
941 |
+
print(" β
Higher-better metric test passed")
|
942 |
+
except Exception as e:
|
943 |
+
print(f" β Higher-better metric test failed: {e}")
|
944 |
+
|
945 |
+
# Test with lower-better metric (error_rate)
|
946 |
+
print(" Testing with lower-better metric (error_rate)...")
|
947 |
+
try:
|
948 |
+
fig2 = create_sota_plot(df_test, 'error_rate')
|
949 |
+
print(" β
Lower-better metric test passed")
|
950 |
+
except Exception as e:
|
951 |
+
print(f" β Lower-better metric test failed: {e}")
|
952 |
+
|
953 |
+
# Test with empty data
|
954 |
+
print(" Testing with empty dataframe...")
|
955 |
+
try:
|
956 |
+
fig3 = create_sota_plot(pd.DataFrame(), 'test_metric')
|
957 |
+
print(" β
Empty data test passed")
|
958 |
+
except Exception as e:
|
959 |
+
print(f" β Empty data test failed: {e}")
|
960 |
+
|
961 |
+
# Test with string metric data (should handle gracefully)
|
962 |
+
print(" Testing with string metric data...")
|
963 |
+
try:
|
964 |
+
df_test_string = df_test.copy()
|
965 |
+
df_test_string['string_metric'] = ['low', 'medium', 'high', 'very_high']
|
966 |
+
fig4 = create_sota_plot(df_test_string, 'string_metric')
|
967 |
+
print(" β
String metric test passed (handled gracefully)")
|
968 |
+
except Exception as e:
|
969 |
+
print(f" β String metric test failed: {e}")
|
970 |
+
|
971 |
+
# Test with mixed numeric/string data
|
972 |
+
print(" Testing with mixed data types...")
|
973 |
+
try:
|
974 |
+
df_test_mixed = df_test.copy()
|
975 |
+
df_test_mixed['mixed_metric'] = [0.85, 'N/A', 0.90, 0.92]
|
976 |
+
fig5 = create_sota_plot(df_test_mixed, 'mixed_metric')
|
977 |
+
print(" β
Mixed data test passed")
|
978 |
+
except Exception as e:
|
979 |
+
print(f" β Mixed data test failed: {e}")
|
980 |
+
|
981 |
+
# Test with paper_date parsing
|
982 |
+
print(" Testing with paper_date column...")
|
983 |
+
try:
|
984 |
+
df_test_dates = df_test.copy()
|
985 |
+
df_test_dates['paper_date'] = ['2015-03-15', '2018-invalid', '2021-12-01', '2022']
|
986 |
+
fig6 = create_sota_plot(df_test_dates, 'accuracy')
|
987 |
+
print(" β
Paper date parsing test passed")
|
988 |
+
except Exception as e:
|
989 |
+
print(f" β Paper date parsing test failed: {e}")
|
990 |
+
|
991 |
+
print("π SOTA label positioning tests completed!")
|
992 |
+
return True
|
993 |
+
|
994 |
+
demo.launch()
|
m.py
DELETED
File without changes
|
pwc_cache/dataset_data/data_10-shot_image_generation_.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34effa6d3c2636d2dced562fa28b650a6c1b3530355e12b53c8c0198c2d51d56
|
3 |
+
size 1413
|
pwc_cache/dataset_data/data_10-shot_image_generation_Babies.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cee3820a3ecfcd63b69bea3e6ab0d41e73b79b73664e32283a549a800e4506f7
|
3 |
+
size 2394
|
pwc_cache/dataset_data/data_10-shot_image_generation_FQL-Driving.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fc9905add6f06f833245cd94c024d22f56290416090687dc05363796ac36bce
|
3 |
+
size 1341
|
pwc_cache/dataset_data/data_10-shot_image_generation_FlyingThings3D.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e75027dce6800e14ef1b881a976bb681212924f820b08338251f44f08201590
|
3 |
+
size 1215
|
pwc_cache/dataset_data/data_10-shot_image_generation_MEAD.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:107a812c403c99deefbd1b0f7c261ad3ce4e48acb7e5b311830cc605e96a0ebf
|
3 |
+
size 1335
|
pwc_cache/dataset_data/data_10-shot_image_generation_Music21.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cca6bca5ef31275adab11e82285971c64ae1bf433cfd945e670d92026ab6c06a
|
3 |
+
size 1234
|
pwc_cache/dataset_data/data_16k_ConceptNet.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:699c069dbc270a1260d0b19cea65586b615200251e48d9a9e0a4c498fa54f5da
|
3 |
+
size 1219
|
data_1_Image,_2_2_Stitchi_FQL-Driving.pkl β pwc_cache/dataset_data/data_1_Image,_2_2_Stitchi_FQL-Driving.pkl
RENAMED
File without changes
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_Alibaba_Cluster_Trace.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5516175dfffa5ca7920e4c24231e2699d6f9d5136258e74b79344ad5e8c345
|
3 |
+
size 1297
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_COCO-WholeBody.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2e9edb367a4b3d8348888c53f32e1d4325ef0f0d7bd44c4c00ec12289fdc7ce
|
3 |
+
size 4908
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-LL-E.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a6120210dd212973c85f7f807e96ae105404b6c988b647f31c2d89fc72f4a79
|
3 |
+
size 1341
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-LL-H.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42dd25d5dce87a1668e7c5d019d3fd5a8a73e55e3797d551099ac2a21d9a0bd9
|
3 |
+
size 1342
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-LL-N.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82b22f28d3d2dd1ce0cd5e111671b934b0c5089fa976688e5792ed29049e0702
|
3 |
+
size 1342
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-OCN-A7M3.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4adc68b6b788213431bc6d5bae2d89718d797515be6b4d221805c035eeda51ef
|
3 |
+
size 1342
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_ExLPose-OCN-RICOH3.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17ad4c6a5bd99cc6f197359416b40d0ae4190243fc8d62bff2e7a45404635361
|
3 |
+
size 1342
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_Human-Art.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e65e0f8668677d0bb02a3206dd0c447d5c4648e33a950dd7ceed2eecfbc0cb9
|
3 |
+
size 3529
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_JHMDB_(2D_poses_only).pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78101631e3029d2d0f03401732b576f5cdeb598b1be7d77db79e4b7c274adc6e
|
3 |
+
size 2133
|
pwc_cache/dataset_data/data_2D_Human_Pose_Estimation_OCHuman.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58932a9a8333ef32f8db91b3b58587bb13ada01b1ca9cedf90549e6b8556c512
|
3 |
+
size 3697
|
pwc_cache/dataset_data/data_2D_Object_Detection_.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e514a1160eca22dd3706ae151eea63459ca1dbcc9fc059915057096ced4c1e3
|
3 |
+
size 1285
|
pwc_cache/dataset_data/data_2D_Object_Detection_BDD100K_val.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44b21c8f7d4157ae46bd0b382cd82f9750c114929eeac483747f9ed781d7004b
|
3 |
+
size 1345
|
pwc_cache/dataset_data/data_2D_Object_Detection_CLCXray.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8e8ba7c53e8006b4e13338da5ee55f5bbcd01693270dba492ffb9f61a87fcad
|
3 |
+
size 1357
|
pwc_cache/dataset_data/data_2D_Object_Detection_CeyMo.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c3c18763cdfab772acb50ba8906db3a38f50c8cd31f88dacfca36ee64ce3c57
|
3 |
+
size 2188
|
pwc_cache/dataset_data/data_2D_Object_Detection_Clear_Weather.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f717ff3d6383f341747beeb1e4a701a964b7aaa8e4470a171f471137da55fab
|
3 |
+
size 1609
|
pwc_cache/dataset_data/data_2D_Object_Detection_DUO.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f53e61ac321236c0aa1b1c6c001db86b1e7a0ba446284bdb72a3790f010dde0a
|
3 |
+
size 1375
|
pwc_cache/dataset_data/data_2D_Object_Detection_Dense_Fog.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:667dea97f3ab2b83ac36e1f8e53dc6f785d642c6cbbef30603b8132ef9d2c0ad
|
3 |
+
size 1703
|
pwc_cache/dataset_data/data_2D_Object_Detection_DroneVehicle.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02ced4ac07e5adaf84cc127fdb5f6621f29b944e675f0f486fa41b03df2ee3ce
|
3 |
+
size 3252
|
pwc_cache/dataset_data/data_2D_Object_Detection_ETDII_Dataset.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e1c35242213e300e64e7f9d589e2e7c20737bbf292e16ad52e71e0325f6eadf
|
3 |
+
size 1372
|
pwc_cache/dataset_data/data_2D_Object_Detection_ExDark.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d86dd2eca8283d0ff0be3bd7f7ba41950bf42fdbdd03d13638992fe03d901619
|
3 |
+
size 1745
|
pwc_cache/dataset_data/data_2D_Object_Detection_FishEye8K.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96fe1af52c13e18a2ac4195554a06de7b8000f32df41c4e96a883ef5fce53354
|
3 |
+
size 1319
|
pwc_cache/dataset_data/data_2D_Object_Detection_RADIATE.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85195b758cf0344f08467fc86d790db69111e03d3300035867f7d111d63868f4
|
3 |
+
size 1362
|
pwc_cache/dataset_data/data_2D_Object_Detection_RF100.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48a287432d6c9d6acf69e1d62aba80c6a8de219176a1fbc9c46632214bbbb908
|
3 |
+
size 1279
|
pwc_cache/dataset_data/data_2D_Object_Detection_RTTS.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94877ba73d7cc8efb731c637589aeabe772071a78abf5b9b8b0656b4d2b72faa
|
3 |
+
size 1310
|
pwc_cache/dataset_data/data_2D_Object_Detection_RadioGalaxyNET_Dataset.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2804fef70c216967323de8fb4556b507aaeca0ebf388cc4f1493ebe541802205
|
3 |
+
size 1415
|
pwc_cache/dataset_data/data_2D_Object_Detection_SARDet-100K.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3e34412ffc634a11a4bccc82e678d14d289a07ccc4eacc675499d32cbc1115a
|
3 |
+
size 4484
|
pwc_cache/dataset_data/data_2D_Object_Detection_SCoralDet_Dataset.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6455f7e5f73b2cbff9f5128c9901891c4c04b149aa0975c9febdcc048dfa29af
|
3 |
+
size 1868
|
pwc_cache/dataset_data/data_2D_Object_Detection_TRR360D.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:594cd89b0b41154ddb5b81a3b8918aa4cdcd5b121003d7b4b03b42e1072c6de7
|
3 |
+
size 1313
|
pwc_cache/dataset_data/data_2D_Object_Detection_TXL-PBC_a_freely_accessible_labeled_peripheral_blood_cell_dataset.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04e71f4aa1c4e09361ea69086285efb896dcf5eed4eb89749733c63dfc5a6853
|
3 |
+
size 2216
|
pwc_cache/dataset_data/data_2D_Object_Detection_UAV-PDD2023.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e89aa91bc4102576ceabee52e7ab6e254e08616fe0ac3213f826dd8b79b80d28
|
3 |
+
size 1353
|
pwc_cache/dataset_data/data_2D_Object_Detection_UAVDB.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c7fcf5a679237be1c2221cb7cf95b67dc336c80b6c30c7bb21daedc466ae96c
|
3 |
+
size 1309
|
pwc_cache/dataset_data/data_2D_Panoptic_Segmentation_4D-OR.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d5f9186b9dd3cf9cee891c97ecf69db4444a7a7c5971f9e6bcbbfce545157bf
|
3 |
+
size 1350
|
pwc_cache/dataset_data/data_2D_Panoptic_Segmentation_MM-OR.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d049b3f8cadc4ec12db2b45db9d8e8cdfb594d9a8cb4bd5a93c9e5816311ca76
|
3 |
+
size 1350
|
pwc_cache/dataset_data/data_2D_Panoptic_Segmentation_ScanNetV2.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1336890de3fe6424b2301402cd6d621dca596a777bf712f5717ef2de8f433c1a
|
3 |
+
size 1333
|
pwc_cache/dataset_data/data_2D_Pose_Estimation_300W.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:717dee7c776a73ce687c5515d13795e79df5f5f84a81e00bb1eff708e48540e7
|
3 |
+
size 1289
|
pwc_cache/dataset_data/data_2D_Pose_Estimation_Animal_Kingdom.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1807940d4ac8c37fd73323b5f96d7f37e7e5efb2126b8be74d828671e702c976
|
3 |
+
size 1315
|
pwc_cache/dataset_data/data_2D_Pose_Estimation_Desert_Locust.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e49dd44d5c4812f3e4aa622873932f0769080269c18b50cb1a212f329c23216
|
3 |
+
size 1289
|