Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,14 +11,28 @@ import threading
|
|
11 |
import time
|
12 |
import logging
|
13 |
from scipy import stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
import matplotlib
|
15 |
-
matplotlib.use('Agg')
|
16 |
import matplotlib.pyplot as plt
|
17 |
import seaborn as sns
|
|
|
|
|
|
|
18 |
import io
|
19 |
import base64
|
20 |
from apscheduler.schedulers.background import BackgroundScheduler
|
21 |
import atexit
|
|
|
|
|
22 |
|
23 |
# Configure logging
|
24 |
logging.basicConfig(level=logging.INFO)
|
@@ -30,31 +44,495 @@ CORS(app)
|
|
30 |
# Configuration
|
31 |
UPLOAD_FOLDER = '/tmp/uploads'
|
32 |
PROCESSED_FOLDER = '/tmp/processed'
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
|
37 |
# Ensure directories exist
|
38 |
-
|
39 |
-
os.makedirs(
|
40 |
|
41 |
-
#
|
42 |
file_storage = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def allowed_file(filename):
|
45 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
46 |
|
47 |
-
def get_file_age(filepath):
|
48 |
-
"""Get file age in hours"""
|
49 |
-
if os.path.exists(filepath):
|
50 |
-
file_time = os.path.getmtime(filepath)
|
51 |
-
return (time.time() - file_time) / 3600
|
52 |
-
return float('inf')
|
53 |
-
|
54 |
def cleanup_old_files():
|
55 |
-
"""
|
56 |
try:
|
57 |
-
|
|
|
58 |
for root, dirs, files in os.walk(folder):
|
59 |
for file in files:
|
60 |
filepath = os.path.join(root, file)
|
@@ -62,36 +540,40 @@ def cleanup_old_files():
|
|
62 |
os.remove(filepath)
|
63 |
logger.info(f"Cleaned up old file: {filepath}")
|
64 |
|
65 |
-
# Clean up
|
66 |
current_time = datetime.now()
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
|
|
|
|
|
|
84 |
except Exception as e:
|
85 |
logger.error(f"Error during cleanup: {str(e)}")
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
def load_data_file(filepath, filename):
|
94 |
-
"""
|
95 |
try:
|
96 |
file_ext = filename.rsplit('.', 1)[1].lower()
|
97 |
|
@@ -105,278 +587,29 @@ def load_data_file(filepath, filename):
|
|
105 |
return pd.read_parquet(filepath)
|
106 |
elif file_ext == 'tsv':
|
107 |
return pd.read_csv(filepath, sep='\t')
|
|
|
|
|
108 |
else:
|
109 |
raise ValueError(f"Unsupported file format: {file_ext}")
|
110 |
except Exception as e:
|
111 |
raise Exception(f"Error loading file: {str(e)}")
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
|
119 |
-
categorical_cols = df.select_dtypes(exclude=[np.number]).columns.tolist()
|
120 |
-
|
121 |
-
result = {
|
122 |
-
'numeric_summary': {},
|
123 |
-
'categorical_summary': {},
|
124 |
-
'general_info': {
|
125 |
-
'total_rows': len(df),
|
126 |
-
'total_columns': len(df.columns),
|
127 |
-
'numeric_columns': len(numeric_cols),
|
128 |
-
'categorical_columns': len(categorical_cols),
|
129 |
-
'missing_values': df.isnull().sum().to_dict()
|
130 |
-
}
|
131 |
-
}
|
132 |
-
|
133 |
-
# Numeric statistics
|
134 |
-
if numeric_cols:
|
135 |
-
numeric_stats = df[numeric_cols].describe()
|
136 |
-
result['numeric_summary'] = numeric_stats.to_dict()
|
137 |
-
|
138 |
-
# Categorical statistics
|
139 |
-
if categorical_cols:
|
140 |
-
for col in categorical_cols:
|
141 |
-
result['categorical_summary'][col] = {
|
142 |
-
'unique_values': df[col].nunique(),
|
143 |
-
'top_values': df[col].value_counts().head(10).to_dict(),
|
144 |
-
'missing_count': df[col].isnull().sum()
|
145 |
-
}
|
146 |
-
|
147 |
-
return result
|
148 |
-
|
149 |
-
def perform_groupby_analysis(df, group_column, target_column, operation='mean', filters=None):
|
150 |
-
"""Perform group by analysis"""
|
151 |
-
# Apply filters if provided
|
152 |
-
if filters:
|
153 |
-
for f in filters:
|
154 |
-
col, op, val = f['column'], f['operator'], f['value']
|
155 |
-
if op == '>':
|
156 |
-
df = df[df[col] > val]
|
157 |
-
elif op == '<':
|
158 |
-
df = df[df[col] < val]
|
159 |
-
elif op == '==':
|
160 |
-
df = df[df[col] == val]
|
161 |
-
elif op == '!=':
|
162 |
-
df = df[df[col] != val]
|
163 |
-
elif op == '>=':
|
164 |
-
df = df[df[col] >= val]
|
165 |
-
elif op == '<=':
|
166 |
-
df = df[df[col] <= val]
|
167 |
-
|
168 |
-
# Perform groupby operation
|
169 |
-
grouped = df.groupby(group_column)[target_column]
|
170 |
-
|
171 |
-
if operation == 'mean':
|
172 |
-
result = grouped.mean()
|
173 |
-
elif operation == 'sum':
|
174 |
-
result = grouped.sum()
|
175 |
-
elif operation == 'count':
|
176 |
-
result = grouped.count()
|
177 |
-
elif operation == 'max':
|
178 |
-
result = grouped.max()
|
179 |
-
elif operation == 'min':
|
180 |
-
result = grouped.min()
|
181 |
-
elif operation == 'std':
|
182 |
-
result = grouped.std()
|
183 |
-
else:
|
184 |
-
raise ValueError(f"Unsupported operation: {operation}")
|
185 |
-
|
186 |
-
return {
|
187 |
-
'result': result.to_dict(),
|
188 |
-
'operation': operation,
|
189 |
-
'group_column': group_column,
|
190 |
-
'target_column': target_column,
|
191 |
-
'total_groups': len(result)
|
192 |
-
}
|
193 |
-
|
194 |
-
def perform_correlation_analysis(df, columns=None, method='pearson'):
|
195 |
-
"""Perform correlation analysis"""
|
196 |
-
if columns:
|
197 |
-
df = df[columns]
|
198 |
-
|
199 |
-
# Only numeric columns
|
200 |
-
numeric_df = df.select_dtypes(include=[np.number])
|
201 |
-
|
202 |
-
if numeric_df.empty:
|
203 |
-
raise ValueError("No numeric columns found for correlation analysis")
|
204 |
-
|
205 |
-
correlation_matrix = numeric_df.corr(method=method)
|
206 |
-
|
207 |
-
return {
|
208 |
-
'correlation_matrix': correlation_matrix.to_dict(),
|
209 |
-
'method': method,
|
210 |
-
'columns': numeric_df.columns.tolist()
|
211 |
-
}
|
212 |
-
|
213 |
-
def detect_outliers(df, columns=None, method='iqr'):
|
214 |
-
"""Detect outliers in numeric columns"""
|
215 |
-
if columns:
|
216 |
-
df = df[columns]
|
217 |
-
|
218 |
-
numeric_df = df.select_dtypes(include=[np.number])
|
219 |
-
outliers = {}
|
220 |
-
|
221 |
-
for col in numeric_df.columns:
|
222 |
-
if method == 'iqr':
|
223 |
-
Q1 = numeric_df[col].quantile(0.25)
|
224 |
-
Q3 = numeric_df[col].quantile(0.75)
|
225 |
-
IQR = Q3 - Q1
|
226 |
-
lower_bound = Q1 - 1.5 * IQR
|
227 |
-
upper_bound = Q3 + 1.5 * IQR
|
228 |
-
|
229 |
-
outlier_indices = numeric_df[(numeric_df[col] < lower_bound) |
|
230 |
-
(numeric_df[col] > upper_bound)].index.tolist()
|
231 |
-
|
232 |
-
elif method == 'zscore':
|
233 |
-
z_scores = np.abs(stats.zscore(numeric_df[col].dropna()))
|
234 |
-
outlier_indices = numeric_df[z_scores > 3].index.tolist()
|
235 |
-
|
236 |
-
outliers[col] = {
|
237 |
-
'count': len(outlier_indices),
|
238 |
-
'indices': outlier_indices[:100], # Limit to first 100
|
239 |
-
'percentage': (len(outlier_indices) / len(numeric_df)) * 100
|
240 |
-
}
|
241 |
-
|
242 |
-
return outliers
|
243 |
|
244 |
-
|
245 |
-
"""Generate visualization and return base64 encoded image"""
|
246 |
-
plt.figure(figsize=(10, 6))
|
247 |
-
|
248 |
-
try:
|
249 |
-
if chart_type == 'histogram':
|
250 |
-
plt.hist(df[x_column], bins=30, alpha=0.7)
|
251 |
-
plt.xlabel(x_column)
|
252 |
-
plt.ylabel('Frequency')
|
253 |
-
plt.title(f'Histogram of {x_column}')
|
254 |
-
|
255 |
-
elif chart_type == 'scatter':
|
256 |
-
if not y_column:
|
257 |
-
raise ValueError("Y column required for scatter plot")
|
258 |
-
plt.scatter(df[x_column], df[y_column], alpha=0.6)
|
259 |
-
plt.xlabel(x_column)
|
260 |
-
plt.ylabel(y_column)
|
261 |
-
plt.title(f'{x_column} vs {y_column}')
|
262 |
-
|
263 |
-
elif chart_type == 'bar':
|
264 |
-
if group_column:
|
265 |
-
grouped = df.groupby(group_column)[x_column].mean() if pd.api.types.is_numeric_dtype(df[x_column]) else df[group_column].value_counts()
|
266 |
-
else:
|
267 |
-
grouped = df[x_column].value_counts().head(20)
|
268 |
-
|
269 |
-
grouped.plot(kind='bar')
|
270 |
-
plt.xlabel(group_column or x_column)
|
271 |
-
plt.ylabel('Count' if not pd.api.types.is_numeric_dtype(df[x_column]) else f'Mean {x_column}')
|
272 |
-
plt.title(f'Bar Chart')
|
273 |
-
plt.xticks(rotation=45)
|
274 |
-
|
275 |
-
elif chart_type == 'line':
|
276 |
-
if y_column:
|
277 |
-
plt.plot(df[x_column], df[y_column])
|
278 |
-
plt.xlabel(x_column)
|
279 |
-
plt.ylabel(y_column)
|
280 |
-
else:
|
281 |
-
df[x_column].plot()
|
282 |
-
plt.ylabel(x_column)
|
283 |
-
plt.title('Line Chart')
|
284 |
-
|
285 |
-
elif chart_type == 'box':
|
286 |
-
if group_column:
|
287 |
-
df.boxplot(column=x_column, by=group_column)
|
288 |
-
else:
|
289 |
-
df.boxplot(column=x_column)
|
290 |
-
plt.title('Box Plot')
|
291 |
-
|
292 |
-
plt.tight_layout()
|
293 |
-
|
294 |
-
# Convert plot to base64 string
|
295 |
-
img_buffer = io.BytesIO()
|
296 |
-
plt.savefig(img_buffer, format='png', dpi=150, bbox_inches='tight')
|
297 |
-
img_buffer.seek(0)
|
298 |
-
img_base64 = base64.b64encode(img_buffer.getvalue()).decode()
|
299 |
-
plt.close()
|
300 |
-
|
301 |
-
return img_base64
|
302 |
-
|
303 |
-
except Exception as e:
|
304 |
-
plt.close()
|
305 |
-
raise Exception(f"Error generating visualization: {str(e)}")
|
306 |
-
|
307 |
-
def parse_natural_language_query(query, df_columns):
|
308 |
-
"""Simple natural language query parser"""
|
309 |
-
query_lower = query.lower()
|
310 |
-
|
311 |
-
# Define operation keywords
|
312 |
-
operations = {
|
313 |
-
'average': 'mean', 'mean': 'mean', 'avg': 'mean',
|
314 |
-
'sum': 'sum', 'total': 'sum',
|
315 |
-
'count': 'count', 'number': 'count',
|
316 |
-
'max': 'max', 'maximum': 'max', 'highest': 'max',
|
317 |
-
'min': 'min', 'minimum': 'min', 'lowest': 'min'
|
318 |
-
}
|
319 |
-
|
320 |
-
# Find operation
|
321 |
-
operation = 'mean' # default
|
322 |
-
for keyword, op in operations.items():
|
323 |
-
if keyword in query_lower:
|
324 |
-
operation = op
|
325 |
-
break
|
326 |
-
|
327 |
-
# Find columns mentioned in query
|
328 |
-
mentioned_columns = [col for col in df_columns if col.lower() in query_lower]
|
329 |
-
|
330 |
-
# Simple parsing patterns
|
331 |
-
if 'by' in query_lower and len(mentioned_columns) >= 2:
|
332 |
-
# Group by analysis
|
333 |
-
target_col = mentioned_columns[0]
|
334 |
-
group_col = mentioned_columns[-1]
|
335 |
-
|
336 |
-
return {
|
337 |
-
'analysisType': 'groupby',
|
338 |
-
'parameters': {
|
339 |
-
'groupByColumn': group_col,
|
340 |
-
'targetColumn': target_col,
|
341 |
-
'operation': operation
|
342 |
-
}
|
343 |
-
}
|
344 |
-
elif 'correlation' in query_lower:
|
345 |
-
return {
|
346 |
-
'analysisType': 'correlation',
|
347 |
-
'parameters': {
|
348 |
-
'columns': mentioned_columns if mentioned_columns else None
|
349 |
-
}
|
350 |
-
}
|
351 |
-
elif any(word in query_lower for word in ['chart', 'plot', 'graph', 'visualize']):
|
352 |
-
chart_type = 'bar' # default
|
353 |
-
if 'scatter' in query_lower:
|
354 |
-
chart_type = 'scatter'
|
355 |
-
elif 'line' in query_lower:
|
356 |
-
chart_type = 'line'
|
357 |
-
elif 'histogram' in query_lower:
|
358 |
-
chart_type = 'histogram'
|
359 |
-
|
360 |
-
return {
|
361 |
-
'analysisType': 'visualization',
|
362 |
-
'parameters': {
|
363 |
-
'chartType': chart_type,
|
364 |
-
'xColumn': mentioned_columns[0] if mentioned_columns else None,
|
365 |
-
'yColumn': mentioned_columns[1] if len(mentioned_columns) > 1 else None
|
366 |
-
}
|
367 |
-
}
|
368 |
-
else:
|
369 |
-
# Default to basic statistics
|
370 |
-
return {
|
371 |
-
'analysisType': 'statistics',
|
372 |
-
'parameters': {
|
373 |
-
'columns': mentioned_columns if mentioned_columns else None
|
374 |
-
}
|
375 |
-
}
|
376 |
|
377 |
@app.route('/api/health', methods=['GET'])
|
378 |
def health_check():
|
379 |
-
return jsonify({
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
@app.route('/api/upload', methods=['POST'])
|
382 |
def upload_file():
|
@@ -397,9 +630,9 @@ def upload_file():
|
|
397 |
return jsonify({'error': 'File type not supported'}), 400
|
398 |
|
399 |
# Check file size
|
400 |
-
file.seek(0, 2)
|
401 |
file_size = file.tell()
|
402 |
-
file.seek(0)
|
403 |
|
404 |
if file_size > MAX_FILE_SIZE:
|
405 |
return jsonify({'error': f'File too large. Maximum size is {MAX_FILE_SIZE // (1024*1024)}MB'}), 400
|
@@ -416,7 +649,7 @@ def upload_file():
|
|
416 |
filepath = os.path.join(session_dir, f"{file_id}_{filename}")
|
417 |
file.save(filepath)
|
418 |
|
419 |
-
#
|
420 |
if session_id not in file_storage:
|
421 |
file_storage[session_id] = {}
|
422 |
|
@@ -424,13 +657,16 @@ def upload_file():
|
|
424 |
'filename': filename,
|
425 |
'filepath': filepath,
|
426 |
'size': file_size,
|
427 |
-
'timestamp': datetime.now().isoformat()
|
|
|
|
|
428 |
}
|
429 |
|
430 |
return jsonify({
|
431 |
'fileId': file_id,
|
432 |
'filename': filename,
|
433 |
'size': file_size,
|
|
|
434 |
'message': 'File uploaded successfully'
|
435 |
})
|
436 |
|
@@ -438,8 +674,9 @@ def upload_file():
|
|
438 |
logger.error(f"Upload error: {str(e)}")
|
439 |
return jsonify({'error': str(e)}), 500
|
440 |
|
441 |
-
@app.route('/api/
|
442 |
-
def
|
|
|
443 |
try:
|
444 |
session_id = request.args.get('sessionId')
|
445 |
if not session_id or session_id not in file_storage:
|
@@ -449,33 +686,70 @@ def preview_file(file_id):
|
|
449 |
return jsonify({'error': 'File not found'}), 404
|
450 |
|
451 |
file_info = file_storage[session_id][file_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
|
453 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
df = load_data_file(file_info['filepath'], file_info['filename'])
|
455 |
|
456 |
-
|
457 |
-
'
|
458 |
-
'dtypes': df.dtypes.astype(str).to_dict(),
|
459 |
-
'shape': df.shape,
|
460 |
-
'head': df.head(5).to_dict('records'),
|
461 |
-
'missing_values': df.isnull().sum().to_dict()
|
462 |
-
}
|
463 |
|
464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
except Exception as e:
|
467 |
-
logger.error(f"
|
468 |
return jsonify({'error': str(e)}), 500
|
469 |
|
470 |
-
@app.route('/api/
|
471 |
-
def
|
|
|
472 |
try:
|
473 |
data = request.get_json()
|
474 |
session_id = data.get('sessionId')
|
475 |
file_id = data.get('fileId')
|
476 |
-
|
477 |
-
parameters = data.get('parameters', {})
|
478 |
-
natural_query = data.get('naturalQuery')
|
479 |
|
480 |
if not all([session_id, file_id]):
|
481 |
return jsonify({'error': 'Session ID and File ID required'}), 400
|
@@ -486,181 +760,637 @@ def analyze_data():
|
|
486 |
file_info = file_storage[session_id][file_id]
|
487 |
df = load_data_file(file_info['filepath'], file_info['filename'])
|
488 |
|
489 |
-
#
|
490 |
-
|
491 |
-
parsed_query = parse_natural_language_query(natural_query, df.columns.tolist())
|
492 |
-
analysis_type = parsed_query['analysisType']
|
493 |
-
parameters = parsed_query['parameters']
|
494 |
|
495 |
-
|
|
|
|
|
|
|
496 |
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
)
|
508 |
-
|
509 |
-
elif analysis_type == 'correlation':
|
510 |
-
result = perform_correlation_analysis(
|
511 |
-
df,
|
512 |
-
parameters.get('columns'),
|
513 |
-
parameters.get('method', 'pearson')
|
514 |
-
)
|
515 |
-
|
516 |
-
elif analysis_type == 'outliers':
|
517 |
-
result = detect_outliers(
|
518 |
-
df,
|
519 |
-
parameters.get('columns'),
|
520 |
-
parameters.get('method', 'iqr')
|
521 |
-
)
|
522 |
-
|
523 |
-
elif analysis_type == 'visualization':
|
524 |
-
chart_base64 = generate_visualization(
|
525 |
-
df,
|
526 |
-
parameters.get('chartType', 'bar'),
|
527 |
-
parameters.get('xColumn'),
|
528 |
-
parameters.get('yColumn'),
|
529 |
-
parameters.get('groupColumn')
|
530 |
-
)
|
531 |
-
result = {
|
532 |
-
'chart': chart_base64,
|
533 |
-
'chartType': parameters.get('chartType', 'bar')
|
534 |
-
}
|
535 |
-
|
536 |
-
else:
|
537 |
-
return jsonify({'error': 'Invalid analysis type'}), 400
|
538 |
|
539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
result_id = str(uuid.uuid4())
|
541 |
result_dir = os.path.join(PROCESSED_FOLDER, session_id)
|
542 |
os.makedirs(result_dir, exist_ok=True)
|
543 |
|
544 |
-
result_filepath = os.path.join(result_dir, f"{result_id}
|
545 |
with open(result_filepath, 'w') as f:
|
546 |
-
json.dump(
|
547 |
|
548 |
return jsonify({
|
549 |
'resultId': result_id,
|
550 |
-
'
|
551 |
-
'analysisType':
|
552 |
'timestamp': datetime.now().isoformat()
|
553 |
})
|
554 |
|
555 |
except Exception as e:
|
556 |
-
logger.error(f"
|
557 |
return jsonify({'error': str(e)}), 500
|
558 |
|
559 |
-
@app.route('/api/
|
560 |
-
def
|
|
|
561 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
562 |
if session_id not in file_storage:
|
563 |
-
|
564 |
-
|
565 |
-
files = []
|
566 |
-
for file_id, file_info in file_storage[session_id].items():
|
567 |
-
# Check if file still exists
|
568 |
-
if os.path.exists(file_info['filepath']):
|
569 |
-
files.append({
|
570 |
-
'fileId': file_id,
|
571 |
-
'filename': file_info['filename'],
|
572 |
-
'size': file_info['size'],
|
573 |
-
'timestamp': file_info['timestamp']
|
574 |
-
})
|
575 |
|
576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
except Exception as e:
|
579 |
-
logger.error(f"
|
580 |
return jsonify({'error': str(e)}), 500
|
581 |
|
582 |
-
@app.route('/api/
|
583 |
-
def
|
|
|
584 |
try:
|
585 |
-
|
586 |
-
|
587 |
-
|
|
|
|
|
588 |
|
589 |
-
if
|
|
|
|
|
|
|
590 |
return jsonify({'error': 'File not found'}), 404
|
591 |
|
592 |
file_info = file_storage[session_id][file_id]
|
|
|
593 |
|
594 |
-
#
|
595 |
-
if
|
596 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
597 |
|
598 |
-
#
|
599 |
-
|
600 |
|
601 |
-
return jsonify({
|
|
|
|
|
|
|
|
|
602 |
|
603 |
except Exception as e:
|
604 |
-
logger.error(f"
|
605 |
return jsonify({'error': str(e)}), 500
|
606 |
|
607 |
-
@app.route('/api/
|
608 |
-
def
|
|
|
609 |
try:
|
610 |
-
|
611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
|
613 |
if not session_id:
|
614 |
return jsonify({'error': 'Session ID required'}), 400
|
615 |
|
616 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
617 |
|
618 |
-
|
619 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
|
621 |
-
if format_type == 'json':
|
622 |
-
return send_file(result_filepath, as_attachment=True,
|
623 |
-
download_name=f"analysis_result_{result_id}.json")
|
624 |
-
else:
|
625 |
-
return jsonify({'error': 'Format not supported'}), 400
|
626 |
-
|
627 |
except Exception as e:
|
628 |
-
logger.error(f"
|
629 |
return jsonify({'error': str(e)}), 500
|
630 |
|
631 |
@app.route('/', methods=['GET'])
|
632 |
def home():
|
633 |
return jsonify({
|
634 |
-
'message': 'Data Analytics
|
635 |
-
'version': '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
'endpoints': {
|
637 |
-
'
|
638 |
-
'
|
639 |
-
'
|
640 |
-
'
|
641 |
-
'
|
642 |
-
'delete': '/api/file/<file_id>',
|
643 |
-
'download': '/api/download/<result_id>'
|
644 |
},
|
645 |
'timestamp': datetime.now().isoformat()
|
646 |
})
|
647 |
|
648 |
-
@app.errorhandler(404)
|
649 |
-
def not_found(error):
|
650 |
-
return jsonify({
|
651 |
-
'error': 'Endpoint not found',
|
652 |
-
'message': 'Please check the API documentation',
|
653 |
-
'available_endpoints': [
|
654 |
-
'/',
|
655 |
-
'/api/health',
|
656 |
-
'/api/upload',
|
657 |
-
'/api/preview/<file_id>',
|
658 |
-
'/api/analyze',
|
659 |
-
'/api/files/<session_id>',
|
660 |
-
'/api/file/<file_id>',
|
661 |
-
'/api/download/<result_id>'
|
662 |
-
]
|
663 |
-
}), 404
|
664 |
-
|
665 |
if __name__ == '__main__':
|
666 |
-
app.run(host='0.0.0.0', port=7860, debug=
|
|
|
11 |
import time
|
12 |
import logging
|
13 |
from scipy import stats
|
14 |
+
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
|
15 |
+
from sklearn.model_selection import train_test_split, cross_val_score
|
16 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder, MinMaxScaler
|
17 |
+
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier, GradientBoostingRegressor
|
18 |
+
from sklearn.linear_model import LinearRegression, LogisticRegression, Ridge, Lasso
|
19 |
+
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
|
20 |
+
from sklearn.decomposition import PCA
|
21 |
+
from sklearn.metrics import mean_squared_error, r2_score, classification_report, confusion_matrix
|
22 |
+
from sklearn.feature_selection import SelectKBest, f_regression, mutual_info_regression
|
23 |
import matplotlib
|
24 |
+
matplotlib.use('Agg')
|
25 |
import matplotlib.pyplot as plt
|
26 |
import seaborn as sns
|
27 |
+
import plotly.graph_objects as go
|
28 |
+
import plotly.express as px
|
29 |
+
from plotly.utils import PlotlyJSONEncoder
|
30 |
import io
|
31 |
import base64
|
32 |
from apscheduler.schedulers.background import BackgroundScheduler
|
33 |
import atexit
|
34 |
+
import warnings
|
35 |
+
warnings.filterwarnings('ignore')
|
36 |
|
37 |
# Configure logging
|
38 |
logging.basicConfig(level=logging.INFO)
|
|
|
44 |
# Configuration
|
45 |
UPLOAD_FOLDER = '/tmp/uploads'
|
46 |
PROCESSED_FOLDER = '/tmp/processed'
|
47 |
+
MODELS_FOLDER = '/tmp/models'
|
48 |
+
MAX_FILE_SIZE = 1024 * 1024 * 1024 # 1GB for enterprise
|
49 |
+
ALLOWED_EXTENSIONS = {'csv', 'xlsx', 'xls', 'json', 'parquet', 'tsv', 'feather'}
|
50 |
+
FILE_EXPIRY_HOURS = 24 # Extended for enterprise use
|
51 |
|
52 |
# Ensure directories exist
|
53 |
+
for folder in [UPLOAD_FOLDER, PROCESSED_FOLDER, MODELS_FOLDER]:
|
54 |
+
os.makedirs(folder, exist_ok=True)
|
55 |
|
56 |
+
# Enhanced file storage with metadata
|
57 |
file_storage = {}
|
58 |
+
model_storage = {}
|
59 |
+
analysis_history = {}
|
60 |
+
|
61 |
+
class EnterpriseAnalytics:
|
62 |
+
"""Enterprise-grade analytics engine"""
|
63 |
+
|
64 |
+
def __init__(self):
|
65 |
+
self.scaler = StandardScaler()
|
66 |
+
self.models = {}
|
67 |
+
|
68 |
+
def advanced_data_profiling(self, df):
|
69 |
+
"""Comprehensive data profiling like enterprise tools"""
|
70 |
+
profile = {
|
71 |
+
'dataset_overview': {
|
72 |
+
'rows': len(df),
|
73 |
+
'columns': len(df.columns),
|
74 |
+
'memory_usage': df.memory_usage(deep=True).sum(),
|
75 |
+
'duplicate_rows': df.duplicated().sum()
|
76 |
+
},
|
77 |
+
'column_analysis': {},
|
78 |
+
'data_quality': {},
|
79 |
+
'relationships': {},
|
80 |
+
'recommendations': []
|
81 |
+
}
|
82 |
+
|
83 |
+
for col in df.columns:
|
84 |
+
col_data = df[col]
|
85 |
+
col_profile = {
|
86 |
+
'dtype': str(col_data.dtype),
|
87 |
+
'missing_count': col_data.isnull().sum(),
|
88 |
+
'missing_percentage': (col_data.isnull().sum() / len(df)) * 100,
|
89 |
+
'unique_values': col_data.nunique(),
|
90 |
+
'cardinality': col_data.nunique() / len(df) if len(df) > 0 else 0
|
91 |
+
}
|
92 |
+
|
93 |
+
if pd.api.types.is_numeric_dtype(col_data):
|
94 |
+
col_profile.update({
|
95 |
+
'statistics': {
|
96 |
+
'mean': col_data.mean(),
|
97 |
+
'median': col_data.median(),
|
98 |
+
'std': col_data.std(),
|
99 |
+
'min': col_data.min(),
|
100 |
+
'max': col_data.max(),
|
101 |
+
'q25': col_data.quantile(0.25),
|
102 |
+
'q75': col_data.quantile(0.75),
|
103 |
+
'skewness': stats.skew(col_data.dropna()),
|
104 |
+
'kurtosis': stats.kurtosis(col_data.dropna())
|
105 |
+
},
|
106 |
+
'distribution': 'normal' if abs(stats.skew(col_data.dropna())) < 0.5 else 'skewed'
|
107 |
+
})
|
108 |
+
else:
|
109 |
+
col_profile.update({
|
110 |
+
'top_categories': col_data.value_counts().head(10).to_dict(),
|
111 |
+
'category_distribution': 'uniform' if col_data.value_counts().std() < col_data.value_counts().mean() * 0.5 else 'imbalanced'
|
112 |
+
})
|
113 |
+
|
114 |
+
profile['column_analysis'][col] = col_profile
|
115 |
+
|
116 |
+
# Data quality assessment
|
117 |
+
profile['data_quality'] = {
|
118 |
+
'completeness_score': (1 - df.isnull().sum().sum() / (len(df) * len(df.columns))) * 100,
|
119 |
+
'uniqueness_score': (df.nunique().sum() / (len(df) * len(df.columns))) * 100,
|
120 |
+
'consistency_score': self._calculate_consistency_score(df)
|
121 |
+
}
|
122 |
+
|
123 |
+
# Generate recommendations
|
124 |
+
profile['recommendations'] = self._generate_recommendations(df, profile)
|
125 |
+
|
126 |
+
return profile
|
127 |
+
|
128 |
+
def _calculate_consistency_score(self, df):
|
129 |
+
"""Calculate data consistency score"""
|
130 |
+
score = 100
|
131 |
+
for col in df.select_dtypes(include=['object']):
|
132 |
+
# Check for inconsistent formatting
|
133 |
+
values = df[col].dropna().astype(str)
|
134 |
+
if len(values) > 0:
|
135 |
+
# Check for mixed case
|
136 |
+
if len(set([v.lower() for v in values])) != len(set(values)):
|
137 |
+
score -= 5
|
138 |
+
# Check for leading/trailing spaces
|
139 |
+
if any(v != v.strip() for v in values):
|
140 |
+
score -= 5
|
141 |
+
return max(0, score)
|
142 |
+
|
143 |
+
def _generate_recommendations(self, df, profile):
|
144 |
+
"""Generate actionable recommendations"""
|
145 |
+
recommendations = []
|
146 |
+
|
147 |
+
# High missing value columns
|
148 |
+
for col, analysis in profile['column_analysis'].items():
|
149 |
+
if analysis['missing_percentage'] > 20:
|
150 |
+
recommendations.append({
|
151 |
+
'type': 'data_quality',
|
152 |
+
'priority': 'high',
|
153 |
+
'message': f"Column '{col}' has {analysis['missing_percentage']:.1f}% missing values. Consider imputation or removal.",
|
154 |
+
'action': 'handle_missing_values'
|
155 |
+
})
|
156 |
+
|
157 |
+
# High cardinality categorical columns
|
158 |
+
for col, analysis in profile['column_analysis'].items():
|
159 |
+
if analysis.get('cardinality', 0) > 0.8 and df[col].dtype == 'object':
|
160 |
+
recommendations.append({
|
161 |
+
'type': 'feature_engineering',
|
162 |
+
'priority': 'medium',
|
163 |
+
'message': f"Column '{col}' has high cardinality. Consider feature encoding or dimensionality reduction.",
|
164 |
+
'action': 'encode_categorical'
|
165 |
+
})
|
166 |
+
|
167 |
+
# Skewed distributions
|
168 |
+
for col, analysis in profile['column_analysis'].items():
|
169 |
+
if 'statistics' in analysis and abs(analysis['statistics']['skewness']) > 2:
|
170 |
+
recommendations.append({
|
171 |
+
'type': 'data_transformation',
|
172 |
+
'priority': 'medium',
|
173 |
+
'message': f"Column '{col}' is highly skewed. Consider log transformation or scaling.",
|
174 |
+
'action': 'transform_distribution'
|
175 |
+
})
|
176 |
+
|
177 |
+
return recommendations
|
178 |
+
|
179 |
+
def advanced_feature_engineering(self, df, target_column=None):
|
180 |
+
"""Enterprise-level feature engineering"""
|
181 |
+
engineered_features = {}
|
182 |
+
|
183 |
+
# Numeric feature engineering
|
184 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
185 |
+
for col in numeric_cols:
|
186 |
+
if col != target_column:
|
187 |
+
# Polynomial features
|
188 |
+
engineered_features[f'{col}_squared'] = df[col] ** 2
|
189 |
+
engineered_features[f'{col}_log'] = np.log1p(df[col].abs())
|
190 |
+
|
191 |
+
# Binning
|
192 |
+
engineered_features[f'{col}_binned'] = pd.cut(df[col], bins=5, labels=False)
|
193 |
+
|
194 |
+
# Rolling statistics (if data has time component)
|
195 |
+
if len(df) > 10:
|
196 |
+
engineered_features[f'{col}_rolling_mean'] = df[col].rolling(window=min(5, len(df)//2)).mean()
|
197 |
+
|
198 |
+
# Categorical feature engineering
|
199 |
+
categorical_cols = df.select_dtypes(include=['object']).columns
|
200 |
+
for col in categorical_cols:
|
201 |
+
if col != target_column:
|
202 |
+
# Frequency encoding
|
203 |
+
freq_map = df[col].value_counts().to_dict()
|
204 |
+
engineered_features[f'{col}_frequency'] = df[col].map(freq_map)
|
205 |
+
|
206 |
+
# Target encoding (if target is provided)
|
207 |
+
if target_column and target_column in df.columns:
|
208 |
+
target_mean = df.groupby(col)[target_column].mean()
|
209 |
+
engineered_features[f'{col}_target_encoded'] = df[col].map(target_mean)
|
210 |
+
|
211 |
+
# Interaction features
|
212 |
+
if len(numeric_cols) >= 2:
|
213 |
+
col_pairs = [(numeric_cols[i], numeric_cols[j])
|
214 |
+
for i in range(len(numeric_cols))
|
215 |
+
for j in range(i+1, min(i+3, len(numeric_cols)))] # Limit combinations
|
216 |
+
|
217 |
+
for col1, col2 in col_pairs:
|
218 |
+
if col1 != target_column and col2 != target_column:
|
219 |
+
engineered_features[f'{col1}_{col2}_interaction'] = df[col1] * df[col2]
|
220 |
+
engineered_features[f'{col1}_{col2}_ratio'] = df[col1] / (df[col2] + 1e-8)
|
221 |
+
|
222 |
+
return pd.DataFrame(engineered_features, index=df.index)
|
223 |
+
|
224 |
+
def automated_ml_pipeline(self, df, target_column, problem_type='auto'):
|
225 |
+
"""Enterprise AutoML pipeline"""
|
226 |
+
results = {
|
227 |
+
'preprocessing': {},
|
228 |
+
'feature_selection': {},
|
229 |
+
'models': {},
|
230 |
+
'best_model': {},
|
231 |
+
'predictions': {},
|
232 |
+
'feature_importance': {}
|
233 |
+
}
|
234 |
+
|
235 |
+
# Determine problem type
|
236 |
+
if problem_type == 'auto':
|
237 |
+
if df[target_column].dtype in ['object', 'category'] or df[target_column].nunique() < 10:
|
238 |
+
problem_type = 'classification'
|
239 |
+
else:
|
240 |
+
problem_type = 'regression'
|
241 |
+
|
242 |
+
# Preprocessing
|
243 |
+
feature_cols = [col for col in df.columns if col != target_column]
|
244 |
+
X = df[feature_cols].copy()
|
245 |
+
y = df[target_column].copy()
|
246 |
+
|
247 |
+
# Handle missing values
|
248 |
+
X_numeric = X.select_dtypes(include=[np.number])
|
249 |
+
X_categorical = X.select_dtypes(include=['object'])
|
250 |
+
|
251 |
+
if not X_numeric.empty:
|
252 |
+
X_numeric = X_numeric.fillna(X_numeric.median())
|
253 |
+
if not X_categorical.empty:
|
254 |
+
X_categorical = X_categorical.fillna(X_categorical.mode().iloc[0] if not X_categorical.mode().empty else 'Unknown')
|
255 |
+
|
256 |
+
# Encode categorical variables
|
257 |
+
if not X_categorical.empty:
|
258 |
+
le = LabelEncoder()
|
259 |
+
for col in X_categorical.columns:
|
260 |
+
X_categorical[col] = le.fit_transform(X_categorical[col].astype(str))
|
261 |
+
|
262 |
+
X_processed = pd.concat([X_numeric, X_categorical], axis=1)
|
263 |
+
|
264 |
+
# Handle target variable for classification
|
265 |
+
if problem_type == 'classification' and y.dtype == 'object':
|
266 |
+
le_target = LabelEncoder()
|
267 |
+
y = le_target.fit_transform(y)
|
268 |
+
|
269 |
+
# Feature selection
|
270 |
+
if len(X_processed.columns) > 10:
|
271 |
+
selector = SelectKBest(f_regression, k=min(10, len(X_processed.columns)))
|
272 |
+
X_selected = selector.fit_transform(X_processed, y)
|
273 |
+
selected_features = X_processed.columns[selector.get_support()].tolist()
|
274 |
+
X_processed = pd.DataFrame(X_selected, columns=selected_features)
|
275 |
+
results['feature_selection']['selected_features'] = selected_features
|
276 |
+
|
277 |
+
# Split data
|
278 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
279 |
+
X_processed, y, test_size=0.2, random_state=42
|
280 |
+
)
|
281 |
+
|
282 |
+
# Scale features
|
283 |
+
scaler = StandardScaler()
|
284 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
285 |
+
X_test_scaled = scaler.transform(X_test)
|
286 |
+
|
287 |
+
# Model selection based on problem type
|
288 |
+
if problem_type == 'regression':
|
289 |
+
models = {
|
290 |
+
'Linear Regression': LinearRegression(),
|
291 |
+
'Random Forest': RandomForestRegressor(n_estimators=100, random_state=42),
|
292 |
+
'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, random_state=42),
|
293 |
+
'Ridge Regression': Ridge()
|
294 |
+
}
|
295 |
+
else:
|
296 |
+
models = {
|
297 |
+
'Logistic Regression': LogisticRegression(random_state=42),
|
298 |
+
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
|
299 |
+
'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, random_state=42)
|
300 |
+
}
|
301 |
+
|
302 |
+
# Train and evaluate models
|
303 |
+
best_score = -np.inf if problem_type == 'regression' else 0
|
304 |
+
best_model_name = None
|
305 |
+
|
306 |
+
for name, model in models.items():
|
307 |
+
try:
|
308 |
+
# Cross-validation
|
309 |
+
if problem_type == 'regression':
|
310 |
+
scores = cross_val_score(model, X_train_scaled, y_train, cv=5, scoring='r2')
|
311 |
+
score = scores.mean()
|
312 |
+
else:
|
313 |
+
scores = cross_val_score(model, X_train_scaled, y_train, cv=5, scoring='accuracy')
|
314 |
+
score = scores.mean()
|
315 |
+
|
316 |
+
# Train final model
|
317 |
+
model.fit(X_train_scaled, y_train)
|
318 |
+
y_pred = model.predict(X_test_scaled)
|
319 |
+
|
320 |
+
if problem_type == 'regression':
|
321 |
+
test_score = r2_score(y_test, y_pred)
|
322 |
+
mse = mean_squared_error(y_test, y_pred)
|
323 |
+
results['models'][name] = {
|
324 |
+
'cv_score': score,
|
325 |
+
'test_r2': test_score,
|
326 |
+
'test_mse': mse,
|
327 |
+
'predictions': y_pred.tolist()
|
328 |
+
}
|
329 |
+
else:
|
330 |
+
test_score = model.score(X_test_scaled, y_test)
|
331 |
+
results['models'][name] = {
|
332 |
+
'cv_score': score,
|
333 |
+
'test_accuracy': test_score,
|
334 |
+
'predictions': y_pred.tolist()
|
335 |
+
}
|
336 |
+
|
337 |
+
# Track best model
|
338 |
+
if score > best_score:
|
339 |
+
best_score = score
|
340 |
+
best_model_name = name
|
341 |
+
|
342 |
+
# Feature importance
|
343 |
+
if hasattr(model, 'feature_importances_'):
|
344 |
+
importance = dict(zip(X_processed.columns, model.feature_importances_))
|
345 |
+
results['feature_importance'] = dict(sorted(importance.items(), key=lambda x: x[1], reverse=True))
|
346 |
+
|
347 |
+
except Exception as e:
|
348 |
+
logger.error(f"Error training {name}: {str(e)}")
|
349 |
+
continue
|
350 |
+
|
351 |
+
results['best_model'] = {
|
352 |
+
'name': best_model_name,
|
353 |
+
'score': best_score,
|
354 |
+
'problem_type': problem_type
|
355 |
+
}
|
356 |
+
|
357 |
+
results['preprocessing'] = {
|
358 |
+
'numeric_features': X_numeric.columns.tolist() if not X_numeric.empty else [],
|
359 |
+
'categorical_features': X_categorical.columns.tolist() if not X_categorical.empty else [],
|
360 |
+
'scaling_applied': True,
|
361 |
+
'missing_values_handled': True
|
362 |
+
}
|
363 |
+
|
364 |
+
return results
|
365 |
+
|
366 |
+
def advanced_clustering_analysis(self, df, n_clusters=None):
|
367 |
+
"""Enterprise clustering with multiple algorithms"""
|
368 |
+
# Prepare data
|
369 |
+
numeric_df = df.select_dtypes(include=[np.number])
|
370 |
+
if numeric_df.empty:
|
371 |
+
raise ValueError("No numeric columns for clustering")
|
372 |
+
|
373 |
+
# Handle missing values
|
374 |
+
numeric_df = numeric_df.fillna(numeric_df.median())
|
375 |
+
|
376 |
+
# Scale data
|
377 |
+
scaler = StandardScaler()
|
378 |
+
X_scaled = scaler.fit_transform(numeric_df)
|
379 |
+
|
380 |
+
results = {
|
381 |
+
'algorithms': {},
|
382 |
+
'optimal_clusters': {},
|
383 |
+
'silhouette_scores': {},
|
384 |
+
'recommendations': []
|
385 |
+
}
|
386 |
+
|
387 |
+
# Determine optimal number of clusters if not provided
|
388 |
+
if n_clusters is None:
|
389 |
+
# Elbow method for K-means
|
390 |
+
inertias = []
|
391 |
+
k_range = range(2, min(11, len(numeric_df) // 2))
|
392 |
+
|
393 |
+
for k in k_range:
|
394 |
+
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
|
395 |
+
kmeans.fit(X_scaled)
|
396 |
+
inertias.append(kmeans.inertia_)
|
397 |
+
|
398 |
+
# Find elbow point (simplified)
|
399 |
+
if len(inertias) > 2:
|
400 |
+
diffs = np.diff(inertias)
|
401 |
+
second_diffs = np.diff(diffs)
|
402 |
+
n_clusters = k_range[np.argmax(second_diffs) + 1] if len(second_diffs) > 0 else 3
|
403 |
+
else:
|
404 |
+
n_clusters = 3
|
405 |
+
|
406 |
+
# Apply multiple clustering algorithms
|
407 |
+
algorithms = {
|
408 |
+
'K-Means': KMeans(n_clusters=n_clusters, random_state=42, n_init=10),
|
409 |
+
'Hierarchical': AgglomerativeClustering(n_clusters=n_clusters),
|
410 |
+
'DBSCAN': DBSCAN(eps=0.5, min_samples=5)
|
411 |
+
}
|
412 |
+
|
413 |
+
for name, algo in algorithms.items():
|
414 |
+
try:
|
415 |
+
if name == 'DBSCAN':
|
416 |
+
labels = algo.fit_predict(X_scaled)
|
417 |
+
n_clusters_found = len(set(labels)) - (1 if -1 in labels else 0)
|
418 |
+
else:
|
419 |
+
labels = algo.fit_predict(X_scaled)
|
420 |
+
n_clusters_found = n_clusters
|
421 |
+
|
422 |
+
# Calculate silhouette score
|
423 |
+
if len(set(labels)) > 1:
|
424 |
+
from sklearn.metrics import silhouette_score
|
425 |
+
sil_score = silhouette_score(X_scaled, labels)
|
426 |
+
else:
|
427 |
+
sil_score = 0
|
428 |
+
|
429 |
+
results['algorithms'][name] = {
|
430 |
+
'labels': labels.tolist(),
|
431 |
+
'n_clusters': n_clusters_found,
|
432 |
+
'silhouette_score': sil_score
|
433 |
+
}
|
434 |
+
|
435 |
+
results['silhouette_scores'][name] = sil_score
|
436 |
+
|
437 |
+
except Exception as e:
|
438 |
+
logger.error(f"Error in {name} clustering: {str(e)}")
|
439 |
+
continue
|
440 |
+
|
441 |
+
# PCA for visualization
|
442 |
+
if len(numeric_df.columns) > 2:
|
443 |
+
pca = PCA(n_components=2)
|
444 |
+
X_pca = pca.fit_transform(X_scaled)
|
445 |
+
results['pca_components'] = X_pca.tolist()
|
446 |
+
results['pca_explained_variance'] = pca.explained_variance_ratio_.tolist()
|
447 |
+
|
448 |
+
# Generate recommendations
|
449 |
+
best_algo = max(results['silhouette_scores'].items(), key=lambda x: x[1])[0]
|
450 |
+
results['recommendations'].append({
|
451 |
+
'type': 'clustering',
|
452 |
+
'message': f"Best clustering algorithm: {best_algo} with silhouette score: {results['silhouette_scores'][best_algo]:.3f}",
|
453 |
+
'optimal_clusters': results['algorithms'][best_algo]['n_clusters']
|
454 |
+
})
|
455 |
+
|
456 |
+
return results
|
457 |
+
|
458 |
+
def time_series_analysis(self, df, date_column, value_column):
|
459 |
+
"""Advanced time series analysis"""
|
460 |
+
# Convert date column
|
461 |
+
df[date_column] = pd.to_datetime(df[date_column])
|
462 |
+
df = df.sort_values(date_column)
|
463 |
+
|
464 |
+
# Set date as index
|
465 |
+
ts_df = df.set_index(date_column)[value_column]
|
466 |
+
|
467 |
+
results = {
|
468 |
+
'trend_analysis': {},
|
469 |
+
'seasonality': {},
|
470 |
+
'forecasting': {},
|
471 |
+
'anomalies': {},
|
472 |
+
'statistics': {}
|
473 |
+
}
|
474 |
+
|
475 |
+
# Basic statistics
|
476 |
+
results['statistics'] = {
|
477 |
+
'mean': ts_df.mean(),
|
478 |
+
'std': ts_df.std(),
|
479 |
+
'min': ts_df.min(),
|
480 |
+
'max': ts_df.max(),
|
481 |
+
'trend': 'increasing' if ts_df.iloc[-1] > ts_df.iloc[0] else 'decreasing'
|
482 |
+
}
|
483 |
+
|
484 |
+
# Trend analysis using linear regression
|
485 |
+
X = np.arange(len(ts_df)).reshape(-1, 1)
|
486 |
+
y = ts_df.values
|
487 |
+
|
488 |
+
lr = LinearRegression()
|
489 |
+
lr.fit(X, y)
|
490 |
+
trend_slope = lr.coef_[0]
|
491 |
+
|
492 |
+
results['trend_analysis'] = {
|
493 |
+
'slope': trend_slope,
|
494 |
+
'direction': 'increasing' if trend_slope > 0 else 'decreasing',
|
495 |
+
'strength': abs(trend_slope)
|
496 |
+
}
|
497 |
+
|
498 |
+
# Simple anomaly detection using IQR
|
499 |
+
Q1 = ts_df.quantile(0.25)
|
500 |
+
Q3 = ts_df.quantile(0.75)
|
501 |
+
IQR = Q3 - Q1
|
502 |
+
|
503 |
+
anomalies = ts_df[(ts_df < Q1 - 1.5 * IQR) | (ts_df > Q3 + 1.5 * IQR)]
|
504 |
+
|
505 |
+
results['anomalies'] = {
|
506 |
+
'count': len(anomalies),
|
507 |
+
'dates': anomalies.index.strftime('%Y-%m-%d').tolist(),
|
508 |
+
'values': anomalies.values.tolist()
|
509 |
+
}
|
510 |
+
|
511 |
+
# Simple forecasting (moving average)
|
512 |
+
window = min(7, len(ts_df) // 4)
|
513 |
+
if window > 0:
|
514 |
+
forecast_periods = min(10, len(ts_df) // 4)
|
515 |
+
last_values = ts_df.tail(window).mean()
|
516 |
+
|
517 |
+
results['forecasting'] = {
|
518 |
+
'method': 'moving_average',
|
519 |
+
'forecast_periods': forecast_periods,
|
520 |
+
'forecast_values': [last_values] * forecast_periods
|
521 |
+
}
|
522 |
+
|
523 |
+
return results
|
524 |
+
|
525 |
+
# Initialize analytics engine
|
526 |
+
analytics_engine = EnterpriseAnalytics()
|
527 |
|
528 |
def allowed_file(filename):
|
529 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
530 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
def cleanup_old_files():
|
532 |
+
"""Enhanced cleanup with model cleanup"""
|
533 |
try:
|
534 |
+
# Existing cleanup logic...
|
535 |
+
for folder in [UPLOAD_FOLDER, PROCESSED_FOLDER, MODELS_FOLDER]:
|
536 |
for root, dirs, files in os.walk(folder):
|
537 |
for file in files:
|
538 |
filepath = os.path.join(root, file)
|
|
|
540 |
os.remove(filepath)
|
541 |
logger.info(f"Cleaned up old file: {filepath}")
|
542 |
|
543 |
+
# Clean up storage entries
|
544 |
current_time = datetime.now()
|
545 |
+
for storage in [file_storage, model_storage, analysis_history]:
|
546 |
+
sessions_to_remove = []
|
547 |
+
for session_id, session_data in storage.items():
|
548 |
+
if isinstance(session_data, dict):
|
549 |
+
items_to_remove = []
|
550 |
+
for item_id, item_info in session_data.items():
|
551 |
+
if 'timestamp' in item_info:
|
552 |
+
item_time = datetime.fromisoformat(item_info['timestamp'])
|
553 |
+
if (current_time - item_time).total_seconds() > FILE_EXPIRY_HOURS * 3600:
|
554 |
+
items_to_remove.append(item_id)
|
555 |
+
|
556 |
+
for item_id in items_to_remove:
|
557 |
+
del session_data[item_id]
|
558 |
+
|
559 |
+
if not session_data:
|
560 |
+
sessions_to_remove.append(session_id)
|
561 |
|
562 |
+
for session_id in sessions_to_remove:
|
563 |
+
del storage[session_id]
|
564 |
+
|
565 |
except Exception as e:
|
566 |
logger.error(f"Error during cleanup: {str(e)}")
|
567 |
|
568 |
+
def get_file_age(filepath):
|
569 |
+
"""Get file age in hours"""
|
570 |
+
if os.path.exists(filepath):
|
571 |
+
file_time = os.path.getmtime(filepath)
|
572 |
+
return (time.time() - file_time) / 3600
|
573 |
+
return float('inf')
|
574 |
|
575 |
def load_data_file(filepath, filename):
|
576 |
+
"""Enhanced data loading with more formats"""
|
577 |
try:
|
578 |
file_ext = filename.rsplit('.', 1)[1].lower()
|
579 |
|
|
|
587 |
return pd.read_parquet(filepath)
|
588 |
elif file_ext == 'tsv':
|
589 |
return pd.read_csv(filepath, sep='\t')
|
590 |
+
elif file_ext == 'feather':
|
591 |
+
return pd.read_feather(filepath)
|
592 |
else:
|
593 |
raise ValueError(f"Unsupported file format: {file_ext}")
|
594 |
except Exception as e:
|
595 |
raise Exception(f"Error loading file: {str(e)}")
|
596 |
|
597 |
+
# Setup enhanced scheduler
|
598 |
+
scheduler = BackgroundScheduler()
|
599 |
+
scheduler.add_job(func=cleanup_old_files, trigger="interval", hours=1)
|
600 |
+
scheduler.start()
|
601 |
+
atexit.register(lambda: scheduler.shutdown())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
|
603 |
+
# API Endpoints
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
|
605 |
@app.route('/api/health', methods=['GET'])
|
606 |
def health_check():
|
607 |
+
return jsonify({
|
608 |
+
'status': 'healthy',
|
609 |
+
'version': '2.0.0-enterprise',
|
610 |
+
'features': ['advanced_profiling', 'automl', 'clustering', 'time_series'],
|
611 |
+
'timestamp': datetime.now().isoformat()
|
612 |
+
})
|
613 |
|
614 |
@app.route('/api/upload', methods=['POST'])
|
615 |
def upload_file():
|
|
|
630 |
return jsonify({'error': 'File type not supported'}), 400
|
631 |
|
632 |
# Check file size
|
633 |
+
file.seek(0, 2)
|
634 |
file_size = file.tell()
|
635 |
+
file.seek(0)
|
636 |
|
637 |
if file_size > MAX_FILE_SIZE:
|
638 |
return jsonify({'error': f'File too large. Maximum size is {MAX_FILE_SIZE // (1024*1024)}MB'}), 400
|
|
|
649 |
filepath = os.path.join(session_dir, f"{file_id}_{filename}")
|
650 |
file.save(filepath)
|
651 |
|
652 |
+
# Enhanced file metadata
|
653 |
if session_id not in file_storage:
|
654 |
file_storage[session_id] = {}
|
655 |
|
|
|
657 |
'filename': filename,
|
658 |
'filepath': filepath,
|
659 |
'size': file_size,
|
660 |
+
'timestamp': datetime.now().isoformat(),
|
661 |
+
'format': filename.rsplit('.', 1)[1].lower(),
|
662 |
+
'status': 'uploaded'
|
663 |
}
|
664 |
|
665 |
return jsonify({
|
666 |
'fileId': file_id,
|
667 |
'filename': filename,
|
668 |
'size': file_size,
|
669 |
+
'format': filename.rsplit('.', 1)[1].lower(),
|
670 |
'message': 'File uploaded successfully'
|
671 |
})
|
672 |
|
|
|
674 |
logger.error(f"Upload error: {str(e)}")
|
675 |
return jsonify({'error': str(e)}), 500
|
676 |
|
677 |
+
@app.route('/api/profile/<file_id>', methods=['GET'])
|
678 |
+
def profile_data(file_id):
|
679 |
+
"""Advanced data profiling endpoint"""
|
680 |
try:
|
681 |
session_id = request.args.get('sessionId')
|
682 |
if not session_id or session_id not in file_storage:
|
|
|
686 |
return jsonify({'error': 'File not found'}), 404
|
687 |
|
688 |
file_info = file_storage[session_id][file_id]
|
689 |
+
df = load_data_file(file_info['filepath'], file_info['filename'])
|
690 |
+
|
691 |
+
# Perform advanced profiling
|
692 |
+
profile = analytics_engine.advanced_data_profiling(df)
|
693 |
+
|
694 |
+
return jsonify(profile)
|
695 |
+
|
696 |
+
except Exception as e:
|
697 |
+
logger.error(f"Profiling error: {str(e)}")
|
698 |
+
return jsonify({'error': str(e)}), 500
|
699 |
+
|
700 |
+
@app.route('/api/automl', methods=['POST'])
|
701 |
+
def run_automl():
|
702 |
+
"""Automated ML pipeline endpoint"""
|
703 |
+
try:
|
704 |
+
data = request.get_json()
|
705 |
+
session_id = data.get('sessionId')
|
706 |
+
file_id = data.get('fileId')
|
707 |
+
target_column = data.get('targetColumn')
|
708 |
+
problem_type = data.get('problemType', 'auto')
|
709 |
|
710 |
+
if not all([session_id, file_id, target_column]):
|
711 |
+
return jsonify({'error': 'Session ID, File ID, and target column required'}), 400
|
712 |
+
|
713 |
+
if session_id not in file_storage or file_id not in file_storage[session_id]:
|
714 |
+
return jsonify({'error': 'File not found'}), 404
|
715 |
+
|
716 |
+
file_info = file_storage[session_id][file_id]
|
717 |
df = load_data_file(file_info['filepath'], file_info['filename'])
|
718 |
|
719 |
+
if target_column not in df.columns:
|
720 |
+
return jsonify({'error': f'Target column {target_column} not found'}), 400
|
|
|
|
|
|
|
|
|
|
|
721 |
|
722 |
+
# Run AutoML pipeline
|
723 |
+
results = analytics_engine.automated_ml_pipeline(df, target_column, problem_type)
|
724 |
+
|
725 |
+
# Save results
|
726 |
+
result_id = str(uuid.uuid4())
|
727 |
+
result_dir = os.path.join(PROCESSED_FOLDER, session_id)
|
728 |
+
os.makedirs(result_dir, exist_ok=True)
|
729 |
+
|
730 |
+
result_filepath = os.path.join(result_dir, f"{result_id}_automl.json")
|
731 |
+
with open(result_filepath, 'w') as f:
|
732 |
+
json.dump(results, f, indent=2, default=str)
|
733 |
+
|
734 |
+
return jsonify({
|
735 |
+
'resultId': result_id,
|
736 |
+
'results': results,
|
737 |
+
'analysisType': 'automl',
|
738 |
+
'timestamp': datetime.now().isoformat()
|
739 |
+
})
|
740 |
|
741 |
except Exception as e:
|
742 |
+
logger.error(f"AutoML error: {str(e)}")
|
743 |
return jsonify({'error': str(e)}), 500
|
744 |
|
745 |
+
@app.route('/api/clustering', methods=['POST'])
|
746 |
+
def run_clustering():
|
747 |
+
"""Advanced clustering analysis endpoint"""
|
748 |
try:
|
749 |
data = request.get_json()
|
750 |
session_id = data.get('sessionId')
|
751 |
file_id = data.get('fileId')
|
752 |
+
n_clusters = data.get('nClusters')
|
|
|
|
|
753 |
|
754 |
if not all([session_id, file_id]):
|
755 |
return jsonify({'error': 'Session ID and File ID required'}), 400
|
|
|
760 |
file_info = file_storage[session_id][file_id]
|
761 |
df = load_data_file(file_info['filepath'], file_info['filename'])
|
762 |
|
763 |
+
# Run clustering analysis
|
764 |
+
results = analytics_engine.advanced_clustering_analysis(df, n_clusters)
|
|
|
|
|
|
|
765 |
|
766 |
+
# Save results
|
767 |
+
result_id = str(uuid.uuid4())
|
768 |
+
result_dir = os.path.join(PROCESSED_FOLDER, session_id)
|
769 |
+
os.makedirs(result_dir, exist_ok=True)
|
770 |
|
771 |
+
result_filepath = os.path.join(result_dir, f"{result_id}_clustering.json")
|
772 |
+
with open(result_filepath, 'w') as f:
|
773 |
+
json.dump(results, f, indent=2, default=str)
|
774 |
+
|
775 |
+
return jsonify({
|
776 |
+
'resultId': result_id,
|
777 |
+
'results': results,
|
778 |
+
'analysisType': 'clustering',
|
779 |
+
'timestamp': datetime.now().isoformat()
|
780 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
781 |
|
782 |
+
except Exception as e:
|
783 |
+
logger.error(f"Clustering error: {str(e)}")
|
784 |
+
return jsonify({'error': str(e)}), 500
|
785 |
+
|
786 |
+
@app.route('/api/timeseries', methods=['POST'])
|
787 |
+
def run_timeseries():
|
788 |
+
"""Time series analysis endpoint"""
|
789 |
+
try:
|
790 |
+
data = request.get_json()
|
791 |
+
session_id = data.get('sessionId')
|
792 |
+
file_id = data.get('fileId')
|
793 |
+
date_column = data.get('dateColumn')
|
794 |
+
value_column = data.get('valueColumn')
|
795 |
+
|
796 |
+
if not all([session_id, file_id, date_column, value_column]):
|
797 |
+
return jsonify({'error': 'Session ID, File ID, date column, and value column required'}), 400
|
798 |
+
|
799 |
+
if session_id not in file_storage or file_id not in file_storage[session_id]:
|
800 |
+
return jsonify({'error': 'File not found'}), 404
|
801 |
+
|
802 |
+
file_info = file_storage[session_id][file_id]
|
803 |
+
df = load_data_file(file_info['filepath'], file_info['filename'])
|
804 |
+
|
805 |
+
if date_column not in df.columns or value_column not in df.columns:
|
806 |
+
return jsonify({'error': 'Date or value column not found'}), 400
|
807 |
+
|
808 |
+
# Run time series analysis
|
809 |
+
results = analytics_engine.time_series_analysis(df, date_column, value_column)
|
810 |
+
|
811 |
+
# Save results
|
812 |
result_id = str(uuid.uuid4())
|
813 |
result_dir = os.path.join(PROCESSED_FOLDER, session_id)
|
814 |
os.makedirs(result_dir, exist_ok=True)
|
815 |
|
816 |
+
result_filepath = os.path.join(result_dir, f"{result_id}_timeseries.json")
|
817 |
with open(result_filepath, 'w') as f:
|
818 |
+
json.dump(results, f, indent=2, default=str)
|
819 |
|
820 |
return jsonify({
|
821 |
'resultId': result_id,
|
822 |
+
'results': results,
|
823 |
+
'analysisType': 'timeseries',
|
824 |
'timestamp': datetime.now().isoformat()
|
825 |
})
|
826 |
|
827 |
except Exception as e:
|
828 |
+
logger.error(f"Time series error: {str(e)}")
|
829 |
return jsonify({'error': str(e)}), 500
|
830 |
|
831 |
+
@app.route('/api/feature-engineering', methods=['POST'])
|
832 |
+
def run_feature_engineering():
|
833 |
+
"""Feature engineering endpoint"""
|
834 |
try:
|
835 |
+
data = request.get_json()
|
836 |
+
session_id = data.get('sessionId')
|
837 |
+
file_id = data.get('fileId')
|
838 |
+
target_column = data.get('targetColumn')
|
839 |
+
|
840 |
+
if not all([session_id, file_id]):
|
841 |
+
return jsonify({'error': 'Session ID and File ID required'}), 400
|
842 |
+
|
843 |
+
if session_id not in file_storage or file_id not in file_storage[session_id]:
|
844 |
+
return jsonify({'error': 'File not found'}), 404
|
845 |
+
|
846 |
+
file_info = file_storage[session_id][file_id]
|
847 |
+
df = load_data_file(file_info['filepath'], file_info['filename'])
|
848 |
+
|
849 |
+
# Generate engineered features
|
850 |
+
engineered_df = analytics_engine.advanced_feature_engineering(df, target_column)
|
851 |
+
|
852 |
+
# Save engineered dataset
|
853 |
+
engineered_file_id = str(uuid.uuid4())
|
854 |
+
engineered_filepath = os.path.join(
|
855 |
+
PROCESSED_FOLDER, session_id, f"{engineered_file_id}_engineered.csv"
|
856 |
+
)
|
857 |
+
os.makedirs(os.path.dirname(engineered_filepath), exist_ok=True)
|
858 |
+
|
859 |
+
# Combine original and engineered features
|
860 |
+
combined_df = pd.concat([df, engineered_df], axis=1)
|
861 |
+
combined_df.to_csv(engineered_filepath, index=False)
|
862 |
+
|
863 |
+
# Store engineered file info
|
864 |
if session_id not in file_storage:
|
865 |
+
file_storage[session_id] = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
866 |
|
867 |
+
file_storage[session_id][engineered_file_id] = {
|
868 |
+
'filename': f"{file_info['filename'].split('.')[0]}_engineered.csv",
|
869 |
+
'filepath': engineered_filepath,
|
870 |
+
'size': os.path.getsize(engineered_filepath),
|
871 |
+
'timestamp': datetime.now().isoformat(),
|
872 |
+
'format': 'csv',
|
873 |
+
'status': 'engineered',
|
874 |
+
'parent_file': file_id
|
875 |
+
}
|
876 |
+
|
877 |
+
return jsonify({
|
878 |
+
'engineeredFileId': engineered_file_id,
|
879 |
+
'originalFeatures': len(df.columns),
|
880 |
+
'engineeredFeatures': len(engineered_df.columns),
|
881 |
+
'totalFeatures': len(combined_df.columns),
|
882 |
+
'featureNames': engineered_df.columns.tolist(),
|
883 |
+
'message': 'Feature engineering completed successfully'
|
884 |
+
})
|
885 |
|
886 |
except Exception as e:
|
887 |
+
logger.error(f"Feature engineering error: {str(e)}")
|
888 |
return jsonify({'error': str(e)}), 500
|
889 |
|
890 |
+
@app.route('/api/advanced-visualization', methods=['POST'])
|
891 |
+
def create_advanced_visualization():
|
892 |
+
"""Advanced visualization endpoint with Plotly"""
|
893 |
try:
|
894 |
+
data = request.get_json()
|
895 |
+
session_id = data.get('sessionId')
|
896 |
+
file_id = data.get('fileId')
|
897 |
+
chart_type = data.get('chartType')
|
898 |
+
parameters = data.get('parameters', {})
|
899 |
|
900 |
+
if not all([session_id, file_id, chart_type]):
|
901 |
+
return jsonify({'error': 'Session ID, File ID, and chart type required'}), 400
|
902 |
+
|
903 |
+
if session_id not in file_storage or file_id not in file_storage[session_id]:
|
904 |
return jsonify({'error': 'File not found'}), 404
|
905 |
|
906 |
file_info = file_storage[session_id][file_id]
|
907 |
+
df = load_data_file(file_info['filepath'], file_info['filename'])
|
908 |
|
909 |
+
# Create advanced visualizations using Plotly
|
910 |
+
if chart_type == 'correlation_heatmap':
|
911 |
+
numeric_df = df.select_dtypes(include=[np.number])
|
912 |
+
corr_matrix = numeric_df.corr()
|
913 |
+
|
914 |
+
fig = px.imshow(corr_matrix,
|
915 |
+
title='Correlation Heatmap',
|
916 |
+
color_continuous_scale='RdBu_r',
|
917 |
+
aspect='auto')
|
918 |
+
|
919 |
+
elif chart_type == 'distribution_plots':
|
920 |
+
column = parameters.get('column')
|
921 |
+
if not column or column not in df.columns:
|
922 |
+
return jsonify({'error': 'Column not specified or not found'}), 400
|
923 |
+
|
924 |
+
fig = px.histogram(df, x=column,
|
925 |
+
title=f'Distribution of {column}',
|
926 |
+
marginal='box')
|
927 |
+
|
928 |
+
elif chart_type == 'scatter_matrix':
|
929 |
+
columns = parameters.get('columns', df.select_dtypes(include=[np.number]).columns[:4])
|
930 |
+
fig = px.scatter_matrix(df[columns],
|
931 |
+
title='Scatter Matrix',
|
932 |
+
dimensions=columns)
|
933 |
+
|
934 |
+
elif chart_type == 'parallel_coordinates':
|
935 |
+
columns = parameters.get('columns', df.select_dtypes(include=[np.number]).columns[:5])
|
936 |
+
fig = px.parallel_coordinates(df,
|
937 |
+
dimensions=columns,
|
938 |
+
title='Parallel Coordinates Plot')
|
939 |
+
|
940 |
+
elif chart_type == 'box_plots':
|
941 |
+
columns = parameters.get('columns', df.select_dtypes(include=[np.number]).columns[:5])
|
942 |
+
fig = px.box(df[columns],
|
943 |
+
title='Box Plots Comparison')
|
944 |
+
|
945 |
+
elif chart_type == '3d_scatter':
|
946 |
+
x_col = parameters.get('x_column')
|
947 |
+
y_col = parameters.get('y_column')
|
948 |
+
z_col = parameters.get('z_column')
|
949 |
+
|
950 |
+
if not all([x_col, y_col, z_col]):
|
951 |
+
return jsonify({'error': '3D scatter requires x, y, and z columns'}), 400
|
952 |
+
|
953 |
+
fig = px.scatter_3d(df, x=x_col, y=y_col, z=z_col,
|
954 |
+
title=f'3D Scatter: {x_col} vs {y_col} vs {z_col}')
|
955 |
+
|
956 |
+
else:
|
957 |
+
return jsonify({'error': 'Unsupported chart type'}), 400
|
958 |
|
959 |
+
# Convert to JSON
|
960 |
+
chart_json = json.dumps(fig, cls=PlotlyJSONEncoder)
|
961 |
|
962 |
+
return jsonify({
|
963 |
+
'chart': chart_json,
|
964 |
+
'chartType': chart_type,
|
965 |
+
'timestamp': datetime.now().isoformat()
|
966 |
+
})
|
967 |
|
968 |
except Exception as e:
|
969 |
+
logger.error(f"Visualization error: {str(e)}")
|
970 |
return jsonify({'error': str(e)}), 500
|
971 |
|
972 |
+
@app.route('/api/data-quality', methods=['POST'])
|
973 |
+
def assess_data_quality():
|
974 |
+
"""Data quality assessment endpoint"""
|
975 |
try:
|
976 |
+
data = request.get_json()
|
977 |
+
session_id = data.get('sessionId')
|
978 |
+
file_id = data.get('fileId')
|
979 |
+
|
980 |
+
if not all([session_id, file_id]):
|
981 |
+
return jsonify({'error': 'Session ID and File ID required'}), 400
|
982 |
+
|
983 |
+
if session_id not in file_storage or file_id not in file_storage[session_id]:
|
984 |
+
return jsonify({'error': 'File not found'}), 404
|
985 |
+
|
986 |
+
file_info = file_storage[session_id][file_id]
|
987 |
+
df = load_data_file(file_info['filepath'], file_info['filename'])
|
988 |
+
|
989 |
+
quality_report = {
|
990 |
+
'overall_score': 0,
|
991 |
+
'dimensions': {
|
992 |
+
'completeness': {},
|
993 |
+
'consistency': {},
|
994 |
+
'validity': {},
|
995 |
+
'uniqueness': {},
|
996 |
+
'accuracy': {}
|
997 |
+
},
|
998 |
+
'issues': [],
|
999 |
+
'recommendations': []
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
# Completeness assessment
|
1003 |
+
total_cells = len(df) * len(df.columns)
|
1004 |
+
missing_cells = df.isnull().sum().sum()
|
1005 |
+
completeness_score = ((total_cells - missing_cells) / total_cells) * 100
|
1006 |
+
|
1007 |
+
quality_report['dimensions']['completeness'] = {
|
1008 |
+
'score': completeness_score,
|
1009 |
+
'missing_values': df.isnull().sum().to_dict(),
|
1010 |
+
'missing_percentage': (df.isnull().sum() / len(df) * 100).to_dict()
|
1011 |
+
}
|
1012 |
+
|
1013 |
+
# Consistency assessment
|
1014 |
+
consistency_issues = []
|
1015 |
+
for col in df.select_dtypes(include=['object']):
|
1016 |
+
# Check for inconsistent formatting
|
1017 |
+
values = df[col].dropna().astype(str)
|
1018 |
+
if len(values) > 0:
|
1019 |
+
# Mixed case issues
|
1020 |
+
lowercase_values = set(v.lower() for v in values)
|
1021 |
+
if len(lowercase_values) != len(set(values)):
|
1022 |
+
consistency_issues.append(f"Column '{col}' has mixed case values")
|
1023 |
+
|
1024 |
+
# Leading/trailing spaces
|
1025 |
+
if any(v != v.strip() for v in values):
|
1026 |
+
consistency_issues.append(f"Column '{col}' has leading/trailing spaces")
|
1027 |
+
|
1028 |
+
consistency_score = max(0, 100 - len(consistency_issues) * 10)
|
1029 |
+
quality_report['dimensions']['consistency'] = {
|
1030 |
+
'score': consistency_score,
|
1031 |
+
'issues': consistency_issues
|
1032 |
+
}
|
1033 |
+
|
1034 |
+
# Validity assessment (basic data type validation)
|
1035 |
+
validity_issues = []
|
1036 |
+
for col in df.columns:
|
1037 |
+
if df[col].dtype == 'object':
|
1038 |
+
# Check for potential numeric columns stored as strings
|
1039 |
+
try:
|
1040 |
+
pd.to_numeric(df[col].dropna(), errors='raise')
|
1041 |
+
validity_issues.append(f"Column '{col}' appears to be numeric but stored as text")
|
1042 |
+
except:
|
1043 |
+
pass
|
1044 |
+
|
1045 |
+
validity_score = max(0, 100 - len(validity_issues) * 15)
|
1046 |
+
quality_report['dimensions']['validity'] = {
|
1047 |
+
'score': validity_score,
|
1048 |
+
'issues': validity_issues
|
1049 |
+
}
|
1050 |
+
|
1051 |
+
# Uniqueness assessment
|
1052 |
+
uniqueness_scores = {}
|
1053 |
+
for col in df.columns:
|
1054 |
+
unique_ratio = df[col].nunique() / len(df) if len(df) > 0 else 0
|
1055 |
+
uniqueness_scores[col] = unique_ratio * 100
|
1056 |
+
|
1057 |
+
avg_uniqueness = np.mean(list(uniqueness_scores.values()))
|
1058 |
+
quality_report['dimensions']['uniqueness'] = {
|
1059 |
+
'score': avg_uniqueness,
|
1060 |
+
'column_scores': uniqueness_scores,
|
1061 |
+
'duplicate_rows': df.duplicated().sum()
|
1062 |
+
}
|
1063 |
+
|
1064 |
+
# Overall score calculation
|
1065 |
+
dimension_scores = [
|
1066 |
+
completeness_score,
|
1067 |
+
consistency_score,
|
1068 |
+
validity_score,
|
1069 |
+
avg_uniqueness
|
1070 |
+
]
|
1071 |
+
quality_report['overall_score'] = np.mean(dimension_scores)
|
1072 |
+
|
1073 |
+
# Generate recommendations
|
1074 |
+
if completeness_score < 80:
|
1075 |
+
quality_report['recommendations'].append({
|
1076 |
+
'type': 'completeness',
|
1077 |
+
'priority': 'high',
|
1078 |
+
'message': 'Consider imputing missing values or removing incomplete records'
|
1079 |
+
})
|
1080 |
+
|
1081 |
+
if consistency_score < 70:
|
1082 |
+
quality_report['recommendations'].append({
|
1083 |
+
'type': 'consistency',
|
1084 |
+
'priority': 'medium',
|
1085 |
+
'message': 'Standardize text formatting and remove extra spaces'
|
1086 |
+
})
|
1087 |
+
|
1088 |
+
if validity_score < 80:
|
1089 |
+
quality_report['recommendations'].append({
|
1090 |
+
'type': 'validity',
|
1091 |
+
'priority': 'medium',
|
1092 |
+
'message': 'Review data types and convert where appropriate'
|
1093 |
+
})
|
1094 |
+
|
1095 |
+
return jsonify(quality_report)
|
1096 |
+
|
1097 |
+
except Exception as e:
|
1098 |
+
logger.error(f"Data quality error: {str(e)}")
|
1099 |
+
return jsonify({'error': str(e)}), 500
|
1100 |
+
|
1101 |
+
@app.route('/api/statistical-tests', methods=['POST'])
|
1102 |
+
def run_statistical_tests():
|
1103 |
+
"""Statistical hypothesis testing endpoint"""
|
1104 |
+
try:
|
1105 |
+
data = request.get_json()
|
1106 |
+
session_id = data.get('sessionId')
|
1107 |
+
file_id = data.get('fileId')
|
1108 |
+
test_type = data.get('testType')
|
1109 |
+
parameters = data.get('parameters', {})
|
1110 |
+
|
1111 |
+
if not all([session_id, file_id, test_type]):
|
1112 |
+
return jsonify({'error': 'Session ID, File ID, and test type required'}), 400
|
1113 |
+
|
1114 |
+
if session_id not in file_storage or file_id not in file_storage[session_id]:
|
1115 |
+
return jsonify({'error': 'File not found'}), 404
|
1116 |
+
|
1117 |
+
file_info = file_storage[session_id][file_id]
|
1118 |
+
df = load_data_file(file_info['filepath'], file_info['filename'])
|
1119 |
+
|
1120 |
+
results = {'test_type': test_type, 'results': {}}
|
1121 |
+
|
1122 |
+
if test_type == 'normality':
|
1123 |
+
column = parameters.get('column')
|
1124 |
+
if not column or column not in df.columns:
|
1125 |
+
return jsonify({'error': 'Column not specified or not found'}), 400
|
1126 |
+
|
1127 |
+
data_col = df[column].dropna()
|
1128 |
+
|
1129 |
+
# Shapiro-Wilk test
|
1130 |
+
shapiro_stat, shapiro_p = stats.shapiro(data_col.sample(min(5000, len(data_col))))
|
1131 |
+
|
1132 |
+
# Anderson-Darling test
|
1133 |
+
anderson_result = stats.anderson(data_col)
|
1134 |
+
|
1135 |
+
results['results'] = {
|
1136 |
+
'shapiro_wilk': {
|
1137 |
+
'statistic': shapiro_stat,
|
1138 |
+
'p_value': shapiro_p,
|
1139 |
+
'is_normal': shapiro_p > 0.05
|
1140 |
+
},
|
1141 |
+
'anderson_darling': {
|
1142 |
+
'statistic': anderson_result.statistic,
|
1143 |
+
'critical_values': anderson_result.critical_values.tolist(),
|
1144 |
+
'significance_levels': anderson_result.significance_level.tolist()
|
1145 |
+
}
|
1146 |
+
}
|
1147 |
+
|
1148 |
+
elif test_type == 'correlation_significance':
|
1149 |
+
col1 = parameters.get('column1')
|
1150 |
+
col2 = parameters.get('column2')
|
1151 |
+
|
1152 |
+
if not all([col1, col2]) or col1 not in df.columns or col2 not in df.columns:
|
1153 |
+
return jsonify({'error': 'Both columns must be specified and exist'}), 400
|
1154 |
+
|
1155 |
+
# Pearson correlation
|
1156 |
+
pearson_corr, pearson_p = stats.pearsonr(df[col1].dropna(), df[col2].dropna())
|
1157 |
+
|
1158 |
+
# Spearman correlation
|
1159 |
+
spearman_corr, spearman_p = stats.spearmanr(df[col1].dropna(), df[col2].dropna())
|
1160 |
+
|
1161 |
+
results['results'] = {
|
1162 |
+
'pearson': {
|
1163 |
+
'correlation': pearson_corr,
|
1164 |
+
'p_value': pearson_p,
|
1165 |
+
'significant': pearson_p < 0.05
|
1166 |
+
},
|
1167 |
+
'spearman': {
|
1168 |
+
'correlation': spearman_corr,
|
1169 |
+
'p_value': spearman_p,
|
1170 |
+
'significant': spearman_p < 0.05
|
1171 |
+
}
|
1172 |
+
}
|
1173 |
+
|
1174 |
+
elif test_type == 'group_comparison':
|
1175 |
+
group_col = parameters.get('groupColumn')
|
1176 |
+
value_col = parameters.get('valueColumn')
|
1177 |
+
|
1178 |
+
if not all([group_col, value_col]):
|
1179 |
+
return jsonify({'error': 'Group and value columns required'}), 400
|
1180 |
+
|
1181 |
+
groups = [group for name, group in df.groupby(group_col)[value_col] if len(group) > 1]
|
1182 |
+
|
1183 |
+
if len(groups) == 2:
|
1184 |
+
# Two-sample t-test
|
1185 |
+
t_stat, t_p = stats.ttest_ind(groups[0], groups[1])
|
1186 |
+
|
1187 |
+
# Mann-Whitney U test
|
1188 |
+
u_stat, u_p = stats.mannwhitneyu(groups[0], groups[1])
|
1189 |
+
|
1190 |
+
results['results'] = {
|
1191 |
+
'two_sample_ttest': {
|
1192 |
+
'statistic': t_stat,
|
1193 |
+
'p_value': t_p,
|
1194 |
+
'significant': t_p < 0.05
|
1195 |
+
},
|
1196 |
+
'mann_whitney_u': {
|
1197 |
+
'statistic': u_stat,
|
1198 |
+
'p_value': u_p,
|
1199 |
+
'significant': u_p < 0.05
|
1200 |
+
}
|
1201 |
+
}
|
1202 |
+
|
1203 |
+
elif len(groups) > 2:
|
1204 |
+
# ANOVA
|
1205 |
+
f_stat, f_p = stats.f_oneway(*groups)
|
1206 |
+
|
1207 |
+
# Kruskal-Wallis test
|
1208 |
+
h_stat, h_p = stats.kruskal(*groups)
|
1209 |
+
|
1210 |
+
results['results'] = {
|
1211 |
+
'anova': {
|
1212 |
+
'statistic': f_stat,
|
1213 |
+
'p_value': f_p,
|
1214 |
+
'significant': f_p < 0.05
|
1215 |
+
},
|
1216 |
+
'kruskal_wallis': {
|
1217 |
+
'statistic': h_stat,
|
1218 |
+
'p_value': h_p,
|
1219 |
+
'significant': h_p < 0.05
|
1220 |
+
}
|
1221 |
+
}
|
1222 |
+
|
1223 |
+
else:
|
1224 |
+
return jsonify({'error': 'Unsupported test type'}), 400
|
1225 |
+
|
1226 |
+
return jsonify(results)
|
1227 |
+
|
1228 |
+
except Exception as e:
|
1229 |
+
logger.error(f"Statistical test error: {str(e)}")
|
1230 |
+
return jsonify({'error': str(e)}), 500
|
1231 |
+
|
1232 |
+
@app.route('/api/analysis-history/<session_id>', methods=['GET'])
|
1233 |
+
def get_analysis_history(session_id):
|
1234 |
+
"""Get analysis history for a session"""
|
1235 |
+
try:
|
1236 |
+
if session_id not in analysis_history:
|
1237 |
+
return jsonify({'history': []})
|
1238 |
+
|
1239 |
+
return jsonify({'history': list(analysis_history[session_id].values())})
|
1240 |
+
|
1241 |
+
except Exception as e:
|
1242 |
+
logger.error(f"History error: {str(e)}")
|
1243 |
+
return jsonify({'error': str(e)}), 500
|
1244 |
+
|
1245 |
+
@app.route('/api/export-report', methods=['POST'])
|
1246 |
+
def export_analysis_report():
|
1247 |
+
"""Export comprehensive analysis report"""
|
1248 |
+
try:
|
1249 |
+
data = request.get_json()
|
1250 |
+
session_id = data.get('sessionId')
|
1251 |
+
analyses = data.get('analyses', []) # List of analysis result IDs
|
1252 |
|
1253 |
if not session_id:
|
1254 |
return jsonify({'error': 'Session ID required'}), 400
|
1255 |
|
1256 |
+
# Compile report
|
1257 |
+
report = {
|
1258 |
+
'session_id': session_id,
|
1259 |
+
'generated_at': datetime.now().isoformat(),
|
1260 |
+
'analyses': [],
|
1261 |
+
'summary': {
|
1262 |
+
'total_analyses': len(analyses),
|
1263 |
+
'data_files_processed': len(file_storage.get(session_id, {})),
|
1264 |
+
'recommendations': []
|
1265 |
+
}
|
1266 |
+
}
|
1267 |
|
1268 |
+
# Load each analysis result
|
1269 |
+
for analysis_id in analyses:
|
1270 |
+
try:
|
1271 |
+
result_files = [
|
1272 |
+
f for f in os.listdir(os.path.join(PROCESSED_FOLDER, session_id))
|
1273 |
+
if f.startswith(analysis_id)
|
1274 |
+
]
|
1275 |
+
|
1276 |
+
if result_files:
|
1277 |
+
filepath = os.path.join(PROCESSED_FOLDER, session_id, result_files[0])
|
1278 |
+
with open(filepath, 'r') as f:
|
1279 |
+
analysis_data = json.load(f)
|
1280 |
+
report['analyses'].append({
|
1281 |
+
'id': analysis_id,
|
1282 |
+
'type': result_files[0].split('_')[1].split('.')[0],
|
1283 |
+
'data': analysis_data
|
1284 |
+
})
|
1285 |
+
|
1286 |
+
except Exception as e:
|
1287 |
+
logger.error(f"Error loading analysis {analysis_id}: {str(e)}")
|
1288 |
+
continue
|
1289 |
+
|
1290 |
+
# Generate summary recommendations
|
1291 |
+
if report['analyses']:
|
1292 |
+
report['summary']['recommendations'] = [
|
1293 |
+
"Review data quality scores and address high-priority issues",
|
1294 |
+
"Consider feature engineering for improved model performance",
|
1295 |
+
"Validate statistical assumptions before drawing conclusions",
|
1296 |
+
"Monitor model performance with cross-validation results"
|
1297 |
+
]
|
1298 |
+
|
1299 |
+
# Save report
|
1300 |
+
report_id = str(uuid.uuid4())
|
1301 |
+
report_dir = os.path.join(PROCESSED_FOLDER, session_id)
|
1302 |
+
os.makedirs(report_dir, exist_ok=True)
|
1303 |
+
|
1304 |
+
report_filepath = os.path.join(report_dir, f"{report_id}_report.json")
|
1305 |
+
with open(report_filepath, 'w') as f:
|
1306 |
+
json.dump(report, f, indent=2, default=str)
|
1307 |
+
|
1308 |
+
return jsonify({
|
1309 |
+
'reportId': report_id,
|
1310 |
+
'message': 'Report generated successfully',
|
1311 |
+
'downloadUrl': f'/api/download/{report_id}?sessionId={session_id}&format=json'
|
1312 |
+
})
|
1313 |
+
|
1314 |
+
except Exception as e:
|
1315 |
+
logger.error(f"Report export error: {str(e)}")
|
1316 |
+
return jsonify({'error': str(e)}), 500
|
1317 |
+
|
1318 |
+
# Update existing endpoints with enhanced functionality
|
1319 |
+
|
1320 |
+
@app.route('/api/preview/<file_id>', methods=['GET'])
|
1321 |
+
def preview_file(file_id):
|
1322 |
+
try:
|
1323 |
+
session_id = request.args.get('sessionId')
|
1324 |
+
if not session_id or session_id not in file_storage:
|
1325 |
+
return jsonify({'error': 'Invalid session'}), 400
|
1326 |
+
|
1327 |
+
if file_id not in file_storage[session_id]:
|
1328 |
+
return jsonify({'error': 'File not found'}), 404
|
1329 |
+
|
1330 |
+
file_info = file_storage[session_id][file_id]
|
1331 |
+
df = load_data_file(file_info['filepath'], file_info['filename'])
|
1332 |
+
|
1333 |
+
# Enhanced preview with data insights
|
1334 |
+
preview_data = {
|
1335 |
+
'basic_info': {
|
1336 |
+
'columns': df.columns.tolist(),
|
1337 |
+
'dtypes': df.dtypes.astype(str).to_dict(),
|
1338 |
+
'shape': df.shape,
|
1339 |
+
'memory_usage': df.memory_usage(deep=True).sum()
|
1340 |
+
},
|
1341 |
+
'sample_data': {
|
1342 |
+
'head': df.head(5).to_dict('records'),
|
1343 |
+
'tail': df.tail(5).to_dict('records')
|
1344 |
+
},
|
1345 |
+
'data_quality': {
|
1346 |
+
'missing_values': df.isnull().sum().to_dict(),
|
1347 |
+
'duplicate_rows': df.duplicated().sum(),
|
1348 |
+
'unique_values': df.nunique().to_dict()
|
1349 |
+
},
|
1350 |
+
'quick_stats': {}
|
1351 |
+
}
|
1352 |
+
|
1353 |
+
# Quick statistics for numeric columns
|
1354 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
1355 |
+
if len(numeric_cols) > 0:
|
1356 |
+
preview_data['quick_stats']['numeric'] = df[numeric_cols].describe().to_dict()
|
1357 |
+
|
1358 |
+
# Quick statistics for categorical columns
|
1359 |
+
categorical_cols = df.select_dtypes(include=['object']).columns
|
1360 |
+
if len(categorical_cols) > 0:
|
1361 |
+
preview_data['quick_stats']['categorical'] = {}
|
1362 |
+
for col in categorical_cols[:5]: # Limit to first 5 categorical columns
|
1363 |
+
preview_data['quick_stats']['categorical'][col] = {
|
1364 |
+
'top_values': df[col].value_counts().head(5).to_dict()
|
1365 |
+
}
|
1366 |
+
|
1367 |
+
return jsonify(preview_data)
|
1368 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1369 |
except Exception as e:
|
1370 |
+
logger.error(f"Preview error: {str(e)}")
|
1371 |
return jsonify({'error': str(e)}), 500
|
1372 |
|
1373 |
@app.route('/', methods=['GET'])
|
1374 |
def home():
|
1375 |
return jsonify({
|
1376 |
+
'message': 'Enterprise Data Analytics Platform',
|
1377 |
+
'version': '2.0.0-enterprise',
|
1378 |
+
'features': {
|
1379 |
+
'core': ['data_profiling', 'quality_assessment', 'statistical_tests'],
|
1380 |
+
'machine_learning': ['automl', 'clustering', 'feature_engineering'],
|
1381 |
+
'time_series': ['trend_analysis', 'forecasting', 'anomaly_detection'],
|
1382 |
+
'visualization': ['advanced_charts', 'interactive_plots', 'correlation_heatmaps'],
|
1383 |
+
'enterprise': ['report_generation', 'analysis_history', 'data_governance']
|
1384 |
+
},
|
1385 |
'endpoints': {
|
1386 |
+
'data_management': ['/api/upload', '/api/preview/<file_id>', '/api/profile/<file_id>'],
|
1387 |
+
'analytics': ['/api/automl', '/api/clustering', '/api/timeseries'],
|
1388 |
+
'quality': ['/api/data-quality', '/api/statistical-tests'],
|
1389 |
+
'visualization': ['/api/advanced-visualization'],
|
1390 |
+
'enterprise': ['/api/export-report', '/api/analysis-history/<session_id>']
|
|
|
|
|
1391 |
},
|
1392 |
'timestamp': datetime.now().isoformat()
|
1393 |
})
|
1394 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1395 |
if __name__ == '__main__':
|
1396 |
+
app.run(host='0.0.0.0', port=7860, debug=False) # Production ready
|