Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from flask_cors import CORS
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
app = Flask(__name__)
|
| 9 |
+
CORS(app) # Enable CORS for all routes
|
| 10 |
+
|
| 11 |
+
# Set Hugging Face cache to ephemeral storage
|
| 12 |
+
os.environ["HF_HOME"] = "/data/.huggingface"
|
| 13 |
+
|
| 14 |
+
# Load Qwen2.5-1.5B model and tokenizer
|
| 15 |
+
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
| 18 |
+
|
| 19 |
+
# Move to GPU if available
|
| 20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
model.to(device)
|
| 22 |
+
|
| 23 |
+
# Data file for preloaded and dynamic data
|
| 24 |
+
data_file = "data/train_data.json"
|
| 25 |
+
|
| 26 |
+
# Load or initialize dataset
|
| 27 |
+
if os.path.exists(data_file):
|
| 28 |
+
with open(data_file, 'r') as f:
|
| 29 |
+
train_texts = json.load(f)
|
| 30 |
+
else:
|
| 31 |
+
train_texts = []
|
| 32 |
+
os.makedirs(os.path.dirname(data_file), exist_ok=True)
|
| 33 |
+
with open(data_file, 'w') as f:
|
| 34 |
+
json.dump(train_texts, f)
|
| 35 |
+
print(f"Loaded {len(train_texts)} examples from {data_file}")
|
| 36 |
+
|
| 37 |
+
# Model save directory
|
| 38 |
+
model_save_dir = "./results/model"
|
| 39 |
+
|
| 40 |
+
@app.route('/adapt', methods=['POST'])
|
| 41 |
+
def adapt_model():
|
| 42 |
+
try:
|
| 43 |
+
data = request.json
|
| 44 |
+
user_input = data.get('text', '')
|
| 45 |
+
|
| 46 |
+
if not user_input:
|
| 47 |
+
return jsonify({'error': 'No input provided'}), 400
|
| 48 |
+
|
| 49 |
+
# Generate self-edit
|
| 50 |
+
prompt = f"Rephrase this: {user_input}"
|
| 51 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=128).to(device)
|
| 52 |
+
self_edit_output = model.generate(**inputs, max_length=150, num_return_sequences=1)
|
| 53 |
+
self_edit = tokenizer.decode(self_edit_output[0], skip_special_tokens=True)
|
| 54 |
+
|
| 55 |
+
# Add to training data and save to disk
|
| 56 |
+
train_texts.append({"prompt": user_input, "completion": self_edit})
|
| 57 |
+
with open(data_file, 'w') as f:
|
| 58 |
+
json.dump(train_texts, f, indent=2)
|
| 59 |
+
|
| 60 |
+
# Prepare dataset for fine-tuning
|
| 61 |
+
encodings = tokenizer(
|
| 62 |
+
[t["prompt"] + " " + t["completion"] for t in train_texts],
|
| 63 |
+
truncation=True,
|
| 64 |
+
padding=True,
|
| 65 |
+
max_length=256,
|
| 66 |
+
return_tensors="pt"
|
| 67 |
+
)
|
| 68 |
+
dataset = [
|
| 69 |
+
{
|
| 70 |
+
"input_ids": encodings["input_ids"][i],
|
| 71 |
+
"attention_mask": encodings["attention_mask"][i],
|
| 72 |
+
"labels": encodings["input_ids"][i]
|
| 73 |
+
} for i in range(len(train_texts))
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
# Fine-tune model
|
| 77 |
+
training_args = TrainingArguments(
|
| 78 |
+
output_dir=model_save_dir,
|
| 79 |
+
num_train_epochs=1,
|
| 80 |
+
per_device_train_batch_size=2,
|
| 81 |
+
gradient_accumulation_steps=4,
|
| 82 |
+
logging_steps=10,
|
| 83 |
+
save_steps=10,
|
| 84 |
+
save_total_limit=1, # Keep only latest checkpoint
|
| 85 |
+
disable_tqdm=True,
|
| 86 |
+
fp16=True if torch.cuda.is_available() else False
|
| 87 |
+
)
|
| 88 |
+
trainer = Trainer(
|
| 89 |
+
model=model,
|
| 90 |
+
args=training_args,
|
| 91 |
+
train_dataset=dataset
|
| 92 |
+
)
|
| 93 |
+
trainer.train()
|
| 94 |
+
|
| 95 |
+
# Save model weights
|
| 96 |
+
trainer.save_model(model_save_dir)
|
| 97 |
+
tokenizer.save_pretrained(model_save_dir)
|
| 98 |
+
|
| 99 |
+
# Generate response
|
| 100 |
+
response_inputs = tokenizer(user_input, return_tensors="pt", truncation=True, max_length=128).to(device)
|
| 101 |
+
response_output = model.generate(**response_inputs, max_length=200, num_return_sequences=1)
|
| 102 |
+
response = tokenizer.decode(response_output[0], skip_special_tokens=True)
|
| 103 |
+
|
| 104 |
+
return jsonify({
|
| 105 |
+
'input': user_input,
|
| 106 |
+
'self_edit': self_edit,
|
| 107 |
+
'response': response
|
| 108 |
+
})
|
| 109 |
+
|
| 110 |
+
except Exception as e:
|
| 111 |
+
return jsonify({'error': str(e)}), 500
|
| 112 |
+
|
| 113 |
+
if __name__ == '__main__':
|
| 114 |
+
app.run(host='0.0.0.0', port=7860)
|