File size: 1,567 Bytes
f2dd44e
 
 
29f0a11
747c2ab
 
54855d5
747c2ab
29f0a11
f2dd44e
 
747c2ab
 
222b9bb
f2dd44e
 
 
 
 
747c2ab
 
 
 
 
 
f2dd44e
 
747c2ab
f2dd44e
 
 
 
 
 
747c2ab
 
 
 
 
 
 
 
f2dd44e
 
54855d5
747c2ab
f2dd44e
 
 
 
 
 
 
747c2ab
9efd6e0
f2dd44e
e86eea2
f2dd44e
 
 
 
54855d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""Bootstrap."""
# pylint: disable=invalid-name
import numpy as np
import gradio as gr
from hf_model_s import model_s
import logzero
from logzero import logger
from set_loglevel import set_loglevel

from gradio_cmat import gradio_cmat

logzero.loglevel(set_loglevel())
model = model_s()


def fn(text1: str, text2: str) -> np.ndarray:
    """Define."""
    list1 = [elm.strip() for elm in text1.splitlines() if elm.strip()]
    list2 = [elm.strip() for elm in text2.splitlines() if elm.strip()]

    logger.debug("text1[:10]: %s", text1[:10])
    logger.debug("text2[:10]: %s", text2[:10])
    logger.info("info text1[:10]: %s", text1[:10])
    logger.info("info text2[:10]: %s", text2[:10])

    try:
        res = gradio_cmat(list1, list2)
        logger.info("res: %s, %s", res. res.shape)
    except Exception as e:
        logger.error("gradio_cmat error: %s", e)
        raise

    return res

out_df = gr.outputs.Dataframe(
    headers=None,
    max_rows=50,  # 20
    max_cols=None,
    overflow_row_behaviour="paginate",
    type="auto",
    label="cmat",
)

# _ = """
try:
    interface = gr.Interface(
        fn,
        [
            gr.inputs.Textbox(
                lines=3, default="The quick brown fox jumped over the lazy dogs."
            ),
            gr.inputs.Textbox(lines=3, default="The fast brown fox jumps over lazy dogs."),
        ],
        out_df,
        description="Gen correlation matrix",
    )
except Exception as e:
    logger.exception("")
    logger.error("gr.Interface.load(%s): %s", "fn", e)
    raise

interface.launch()