Spaces:
Runtime error
Runtime error
ffreemt
015321b
| """Refer to https://github.com/abacaj/mpt-30B-inference/blob/main/download_model.py.""" | |
| # pylint: disable=invalid-name, missing-function-docstring, missing-class-docstring, redefined-outer-name, broad-except | |
| import os | |
| import time | |
| from dataclasses import asdict, dataclass | |
| import gradio as gr | |
| from ctransformers import AutoConfig, AutoModelForCausalLM | |
| from mcli import predict | |
| from huggingface_hub import hf_hub_download | |
| from loguru import logger | |
| URL = os.getenv("URL", "") | |
| MOSAICML_API_KEY = os.getenv("MOSAICML_API_KEY", "") | |
| if URL is None: | |
| raise ValueError("URL environment variable must be set") | |
| if MOSAICML_API_KEY is None: | |
| raise ValueError("git environment variable must be set") | |
| def predict0(prompt, bot): | |
| logger.debug(f"{prompt=}, {bot=}, {timeout=}") | |
| try: | |
| user_prompt = prompt | |
| generator = generate(llm, generation_config, system_prompt, user_prompt.strip()) | |
| print(assistant_prefix, end=" ", flush=True) | |
| for word in generator: | |
| print(word, end="", flush=True) | |
| print("") | |
| response = word | |
| except Exception as exc: | |
| logger.error(exc) | |
| response = f"{exc=}" | |
| bot = {"inputs": [response]} | |
| return prompt, bot | |
| def download_mpt_quant(destination_folder: str, repo_id: str, model_filename: str): | |
| local_path = os.path.abspath(destination_folder) | |
| return hf_hub_download( | |
| repo_id=repo_id, | |
| filename=model_filename, | |
| local_dir=local_path, | |
| local_dir_use_symlinks=True, | |
| ) | |
| class GenerationConfig: | |
| temperature: float | |
| top_k: int | |
| top_p: float | |
| repetition_penalty: float | |
| max_new_tokens: int | |
| seed: int | |
| reset: bool | |
| stream: bool | |
| threads: int | |
| stop: list[str] | |
| def format_prompt(system_prompt: str, user_prompt: str): | |
| """format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py""" | |
| system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" | |
| user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n" | |
| assistant_prompt = f"<|im_start|>assistant\n" | |
| return f"{system_prompt}{user_prompt}{assistant_prompt}" | |
| def generate( | |
| llm: AutoModelForCausalLM, | |
| generation_config: GenerationConfig, | |
| system_prompt: str, | |
| user_prompt: str, | |
| ): | |
| """run model inference, will return a Generator if streaming is true""" | |
| return llm( | |
| format_prompt( | |
| system_prompt, | |
| user_prompt, | |
| ), | |
| **asdict(generation_config), | |
| ) | |
| class Chat: | |
| default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers." | |
| system_format = "<|im_start|>system\n{}<|im_end|>\n" | |
| def __init__( | |
| self, system: str = None, user: str = None, assistant: str = None | |
| ) -> None: | |
| if system is not None: | |
| self.set_system_prompt(system) | |
| else: | |
| self.reset_system_prompt() | |
| self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n" | |
| self.assistant = ( | |
| assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n" | |
| ) | |
| self.response_prefix = self.assistant.split("{}", maxsplit=1)[0] | |
| def set_system_prompt(self, system_prompt): | |
| # self.system = self.system_format.format(system_prompt) | |
| return system_prompt | |
| def reset_system_prompt(self): | |
| return self.set_system_prompt(self.default_system_prompt) | |
| def history_as_formatted_str(self, system, history) -> str: | |
| system = self.system_format.format(system) | |
| text = system + "".join( | |
| [ | |
| "\n".join( | |
| [ | |
| self.user.format(item[0]), | |
| self.assistant.format(item[1]), | |
| ] | |
| ) | |
| for item in history[:-1] | |
| ] | |
| ) | |
| text += self.user.format(history[-1][0]) | |
| text += self.response_prefix | |
| # stopgap solution to too long sequences | |
| if len(text) > 4500: | |
| # delete from the middle between <|im_start|> and <|im_end|> | |
| # find the middle ones, then expand out | |
| start = text.find("<|im_start|>", 139) | |
| end = text.find("<|im_end|>", 139) | |
| while end < len(text) and len(text) > 4500: | |
| end = text.find("<|im_end|>", end + 1) | |
| text = text[:start] + text[end + 1 :] | |
| if len(text) > 4500: | |
| # the nice way didn't work, just truncate | |
| # deleting the beginning | |
| text = text[-4500:] | |
| return text | |
| def clear_history(self, history): | |
| return [] | |
| def turn(self, user_input: str): | |
| self.user_turn(user_input) | |
| return self.bot_turn() | |
| def user_turn(self, user_input: str, history): | |
| history.append([user_input, ""]) | |
| return user_input, history | |
| def bot_turn(self, system, history): | |
| conversation = self.history_as_formatted_str(system, history) | |
| assistant_response = call_inf_server(conversation) | |
| history[-1][-1] = assistant_response | |
| print(system) | |
| print(history) | |
| return "", history | |
| def call_inf_server(prompt): | |
| try: | |
| response = predict( | |
| URL, | |
| {"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512}, | |
| timeout=70, | |
| ) | |
| # print(f'prompt: {prompt}') | |
| # print(f'len(prompt): {len(prompt)}') | |
| response = response["outputs"][0] | |
| # print(f'len(response): {len(response)}') | |
| # remove spl tokens from prompt | |
| spl_tokens = ["<|im_start|>", "<|im_end|>"] | |
| clean_prompt = prompt.replace(spl_tokens[0], "").replace(spl_tokens[1], "") | |
| # return response[len(clean_prompt) :] # remove the prompt | |
| try: | |
| user_prompt = prompt | |
| generator = generate(llm, generation_config, system_prompt, user_prompt.strip()) | |
| print(assistant_prefix, end=" ", flush=True) | |
| for word in generator: | |
| print(word, end="", flush=True) | |
| print("") | |
| response = word | |
| except Exception as exc: | |
| logger.error(exc) | |
| response = f"{exc=}" | |
| return response | |
| except Exception as e: | |
| # assume it is our error | |
| # just wait and try one more time | |
| print(e) | |
| time.sleep(1) | |
| response = predict( | |
| URL, | |
| {"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512}, | |
| timeout=70, | |
| ) | |
| # print(response) | |
| response = response["outputs"][0] | |
| return response[len(prompt) :] # remove the prompt | |
| logger.info("start dl") | |
| _ = """full url: https://huggingface.co/TheBloke/mpt-30B-chat-GGML/blob/main/mpt-30b-chat.ggmlv0.q4_1.bin""" | |
| repo_id = "TheBloke/mpt-30B-chat-GGML" | |
| model_filename = "mpt-30b-chat.ggmlv0.q4_1.bin" | |
| destination_folder = "models" | |
| download_mpt_quant(destination_folder, repo_id, model_filename) | |
| logger.info("done dl") | |
| config = AutoConfig.from_pretrained("mosaicml/mpt-30b-chat", context_length=8192) | |
| llm = AutoModelForCausalLM.from_pretrained( | |
| os.path.abspath("models/mpt-30b-chat.ggmlv0.q4_1.bin"), | |
| model_type="mpt", | |
| config=config, | |
| ) | |
| system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers." | |
| generation_config = GenerationConfig( | |
| temperature=0.2, | |
| top_k=0, | |
| top_p=0.9, | |
| repetition_penalty=1.0, | |
| max_new_tokens=512, # adjust as needed | |
| seed=42, | |
| reset=False, # reset history (cache) | |
| stream=True, # streaming per word/token | |
| threads=int(os.cpu_count() / 2), # adjust for your CPU | |
| stop=["<|im_end|>", "|<"], | |
| ) | |
| user_prefix = "[user]: " | |
| assistant_prefix = "[assistant]: " | |
| with gr.Blocks( | |
| theme=gr.themes.Soft(), | |
| css=".disclaimer {font-variant-caps: all-small-caps; font-size: small;}", | |
| ) as demo: | |
| gr.Markdown( | |
| """<h1><center>MosaicML MPT-30B-Chat</center></h1> | |
| This demo is of [MPT-30B-Chat](https://huggingface.co/mosaicml/mpt-30b-ch a t). It is based on [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) fine-tuned on approximately 300,000 turns of high-quality conversations, and is powered by [MosaicML Inference](https://www.mosaicml.com/inference). | |
| If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs, [sign up](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b) for MosaicML platform. | |
| """ | |
| ) | |
| conversation = Chat() | |
| chatbot = gr.Chatbot().style(height=200) # 500 | |
| with gr.Row(): | |
| with gr.Column(): | |
| msg = gr.Textbox( | |
| label="Chat Message Box", | |
| placeholder="Chat Message Box", | |
| show_label=False, | |
| ).style(container=False) | |
| with gr.Column(): | |
| with gr.Row(): | |
| submit = gr.Button("Submit") | |
| stop = gr.Button("Stop") | |
| clear = gr.Button("Clear") | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Options:", open=False): | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| system = gr.Textbox( | |
| label="System Prompt", | |
| value=Chat.default_system_prompt, | |
| show_label=False, | |
| ).style(container=False) | |
| with gr.Column(): | |
| with gr.Row(): | |
| change = gr.Button("Change System Prompt") | |
| reset = gr.Button("Reset System Prompt") | |
| with gr.Row(): | |
| gr.Markdown( | |
| "Disclaimer: MPT-30B can produce factually incorrect output, and should not be relied on to produce " | |
| "factually accurate information. MPT-30B was trained on various public datasets; while great efforts " | |
| "have been taken to clean the pretraining data, it is possible that this model could generate lewd, " | |
| "biased, or otherwise offensive outputs.", | |
| elem_classes=["disclaimer"], | |
| ) | |
| with gr.Row(): | |
| gr.Markdown( | |
| "[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)", | |
| elem_classes=["disclaimer"], | |
| ) | |
| _ = """ | |
| submit_event = msg.submit( | |
| fn=conversation.user_turn, | |
| inputs=[msg, chatbot], | |
| outputs=[msg, chatbot], | |
| queue=False, | |
| ).then( | |
| fn=conversation.bot_turn, | |
| inputs=[system, chatbot], | |
| outputs=[msg, chatbot], | |
| queue=True, | |
| ) | |
| submit_click_event = submit.click( | |
| fn=conversation.user_turn, | |
| inputs=[msg, chatbot], | |
| outputs=[msg, chatbot], | |
| queue=False, | |
| ).then( | |
| # fn=conversation.bot_turn, | |
| inputs=[system, chatbot], | |
| outputs=[msg, chatbot], | |
| queue=True, | |
| ) | |
| stop.click( | |
| fn=None, | |
| inputs=None, | |
| outputs=None, | |
| cancels=[submit_event, submit_click_event], | |
| queue=False, | |
| ) | |
| clear.click(lambda: None, None, chatbot, queue=False).then( | |
| fn=conversation.clear_history, | |
| inputs=[chatbot], | |
| outputs=[chatbot], | |
| queue=False, | |
| ) | |
| change.click( | |
| fn=conversation.set_system_prompt, | |
| inputs=[system], | |
| outputs=[system], | |
| queue=False, | |
| ) | |
| reset.click( | |
| fn=conversation.reset_system_prompt, | |
| inputs=[], | |
| outputs=[system], | |
| queue=False, | |
| ) | |
| # """ | |
| msg.submit( | |
| # fn=conversation.user_turn, | |
| fn=predict0, | |
| inputs=[msg, chatbot], | |
| outputs=[msg, chatbot], | |
| queue=False, | |
| ) | |
| demo.queue(max_size=36, concurrency_count=14).launch(debug=True) | |