File size: 12,518 Bytes
deeaab0
 
 
 
 
 
86dc97a
deeaab0
 
 
7743097
4f331cc
deeaab0
 
 
4f331cc
f1dfff2
89dc142
deeaab0
f1dfff2
 
 
 
 
 
deeaab0
 
 
89dc142
deeaab0
 
 
 
4f331cc
89dc142
 
deeaab0
 
4f331cc
 
 
 
 
deeaab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f331cc
 
 
deeaab0
4f331cc
 
deeaab0
4f331cc
deeaab0
 
 
 
 
 
 
 
 
 
4f331cc
deeaab0
 
 
 
 
4f331cc
deeaab0
 
 
 
 
f1dfff2
 
 
 
 
 
 
 
 
 
 
 
 
deeaab0
 
 
 
 
 
f1dfff2
deeaab0
 
 
 
4f331cc
deeaab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f331cc
 
 
 
89dc142
deeaab0
 
 
 
 
 
4f331cc
 
 
deeaab0
4f331cc
 
 
 
 
 
 
deeaab0
4f331cc
 
 
 
 
deeaab0
4f331cc
deeaab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f331cc
deeaab0
 
 
4f331cc
 
deeaab0
4f331cc
deeaab0
 
 
 
 
4f331cc
 
 
 
deeaab0
86dc97a
28743d9
89dc142
4f331cc
 
 
 
 
89dc142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f331cc
89dc142
 
 
 
 
 
4f331cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deeaab0
 
 
 
 
 
 
 
 
 
 
89dc142
 
 
 
 
86dc97a
4f331cc
 
 
 
7743097
 
74b4e24
 
 
7743097
 
 
 
 
 
 
ce667dc
 
 
74b4e24
ce667dc
 
 
 
deeaab0
7743097
 
 
 
 
 
 
 
 
74b4e24
7743097
 
 
 
 
 
 
 
 
4f331cc
28743d9
f1dfff2
7743097
4f331cc
7743097
 
4f331cc
86dc97a
 
 
 
 
 
 
 
deeaab0
 
 
 
4f331cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""Refer to
https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py

https://python.langchain.com/en/latest/getting_started/tutorials.html
"""
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module
import os
import time
from pathlib import Path
from textwrap import dedent
from types import SimpleNamespace

import gradio as gr
from charset_normalizer import detect
from chromadb.config import Settings
from epub2txt import epub2txt
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
from langchain.document_loaders import (
    CSVLoader,
    Docx2txtLoader,
    PDFMinerLoader,
    TextLoader,
)

# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import (
    CharacterTextSplitter,
    RecursiveCharacterTextSplitter,
)

# FAISS instead of PineCone
from langchain.vectorstores import FAISS, Chroma
from loguru import logger
from PyPDF2 import PdfReader  # localgpt
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline

# import click
# from typing import List

# from utils import xlxs_to_csv

# load possible env such as OPENAI_API_KEY
# from dotenv import load_dotenv

# load_dotenv()load_dotenv()

# fix timezone
os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()  # type: ignore # pylint: disable=no-member
except Exception:
    # Windows
    logger.warning("Windows, cant run time.tzset()")

ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"

# Define the Chroma settings
CHROMA_SETTINGS = Settings(
    chroma_db_impl="duckdb+parquet",
    persist_directory=PERSIST_DIRECTORY,
    anonymized_telemetry=False,
)
ns = SimpleNamespace(qa=None)


def load_single_document(file_path: str | Path) -> Document:
    """ingest.py"""
    # Loads a single document from a file path
    # encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
    encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
    if file_path.endswith(".txt"):
        if encoding is None:
            logger.warning(
                f" {file_path}'s encoding is None "
                "Something is fishy, return empty str "
            )
            return Document(page_content="", metadata={"source": file_path})

        try:
            loader = TextLoader(file_path, encoding=encoding)
        except Exception as exc:
            logger.warning(f" {exc}, return dummy ")
            return Document(page_content="", metadata={"source": file_path})

    elif file_path.endswith(".pdf"):
        loader = PDFMinerLoader(file_path)
    elif file_path.endswith(".csv"):
        loader = CSVLoader(file_path)
    elif Path(file_path).suffix in [".docx"]:
        try:
            loader = Docx2txtLoader(file_path)
        except Exception as exc:
            logger.error(f" {file_path} errors: {exc}")
            return Document(page_content="", metadata={"source": file_path})
    elif Path(file_path).suffix in [".epub"]:  # for epub? epub2txt unstructured
        try:
            _ = epub2txt(file_path)
        except Exception as exc:
            logger.error(f" {file_path} errors: {exc}")
            return Document(page_content="", metadata={"source": file_path})
        return Document(page_content=_, metadata={"source": file_path})
    else:
        if encoding is None:
            logger.warning(
                f" {file_path}'s encoding is None "
                "Likely binary files, return empty str "
            )
            return Document(page_content="", metadata={"source": file_path})
        try:
            loader = TextLoader(file_path)
        except Exception as exc:
            logger.error(f" {exc}, returnning empty string")
            return Document(page_content="", metadata={"source": file_path})

    return loader.load()[0]


def get_pdf_text(pdf_docs):
    """docs-chat."""
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    """docs-chat."""
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    """docs-chat."""
    # embeddings = OpenAIEmbeddings()
    model_name = "hkunlp/instructor-xl"
    model_name = "hkunlp/instructor-large"
    model_name = "hkunlp/instructor-base"
    logger.info(f"Loading {model_name}")
    embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
    logger.info(f"Done loading {model_name}")

    logger.info(
        "Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    logger.info(
        "Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
    )

    return vectorstore


def greet(name):
    """Test."""
    logger.debug(f" name: [{name}] ")
    return "Hello " + name + "!!"


def upload_files(files):
    """Upload files."""
    file_paths = [file.name for file in files]
    logger.info(file_paths)

    res = ingest(file_paths)
    logger.info("Processed:\n{res}")
    del res

    ns.qa = load_qa()

    # return [str(elm) for elm in res]
    return file_paths

    # return ingest(file_paths)


def ingest(
    file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type="cpu"
):
    """Gen Chroma db.

    torch.cuda.is_available()

    file_paths =
    ['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py',
    'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md',
    'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt']
    """
    logger.info("Doing ingest...")
    if device_type in ["cpu", "CPU"]:
        device = "cpu"
    elif device_type in ["mps", "MPS"]:
        device = "mps"
    else:
        device = "cuda"

    #  Load documents and split in chunks
    # logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
    # documents = load_documents(SOURCE_DIRECTORY)

    documents = []
    for file_path in file_paths:
        documents.append(load_single_document(f"{file_path}"))

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    texts = text_splitter.split_documents(documents)

    logger.info(f"Loaded {len(documents)} documents ")
    logger.info(f"Split into {len(texts)} chunks of text")

    # Create embeddings
    embeddings = HuggingFaceInstructEmbeddings(
        model_name=model_name, model_kwargs={"device": device}
    )

    db = Chroma.from_documents(
        texts,
        embeddings,
        persist_directory=PERSIST_DIRECTORY,
        client_settings=CHROMA_SETTINGS,
    )
    db.persist()
    db = None
    logger.info("Done ingest")

    return [
        [Path(doc.metadata.get("source")).name, len(doc.page_content)]
        for doc in documents
    ]


# https://huggingface.co/TheBloke/vicuna-7B-1.1-HF
def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
    """Gen a local llm.

    localgpt run_localgpt
    """
    tokenizer = LlamaTokenizer.from_pretrained(model_id)
    model = LlamaForCausalLM.from_pretrained(
        model_id,
        # load_in_8bit=True, # set these options if your GPU supports them!
        # device_map=1#'auto',
        # torch_dtype=torch.float16,
        # low_cpu_mem_usage=True
    )

    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_length=2048,
        temperature=0,
        top_p=0.95,
        repetition_penalty=1.15,
    )

    local_llm = HuggingFacePipeline(pipeline=pipe)
    return local_llm


def load_qa(device: str = "cpu", model_name: str = "hkunlp/instructor-base"):
    """Gen qa."""
    logger.info("Doing qa")
    # device = 'cpu'
    # model_name = "hkunlp/instructor-xl"
    # model_name = "hkunlp/instructor-large"
    # model_name = "hkunlp/instructor-base"
    embeddings = HuggingFaceInstructEmbeddings(
        model_name=model_name, model_kwargs={"device": device}
    )
    # xl 4.96G, large 3.5G,
    db = Chroma(
        persist_directory=PERSIST_DIRECTORY,
        embedding_function=embeddings,
        client_settings=CHROMA_SETTINGS,
    )
    retriever = db.as_retriever()

    llm = gen_local_llm()  # "TheBloke/vicuna-7B-1.1-HF" 12G?

    qa = RetrievalQA.from_chain_type(
        llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
    )

    logger.info("Done qa")

    return qa


def main1():
    """Lump codes"""
    with gr.Blocks() as demo:
        iface = gr.Interface(fn=greet, inputs="text", outputs="text")
        iface.launch()

    demo.launch()


def main():
    """Do blocks."""
    logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")

    openai_api_key = os.getenv("OPENAI_API_KEY")
    logger.info(f"openai_api_key (hf space SECRETS/env): {openai_api_key}")

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        # name = gr.Textbox(label="Name")
        # greet_btn = gr.Button("Submit")
        # output = gr.Textbox(label="Output Box")
        # greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
        with gr.Accordion("Info", open=False):
            _ = """
                # localgpt
                Talk to your docs (.pdf, .docx, .epub, .txt .md and
                other text docs). It
                takes quite a while to ingest docs (10-30 min. depending
                on net, RAM, CPU etc.).
                """
            gr.Markdown(dedent(_))

        # with gr.Accordion("Upload files", open=True):
        with gr.Tab("Upload files"):
            # Upload files and generate embeddings database
            file_output = gr.File()
            upload_button = gr.UploadButton(
                "Click to upload files (Hold ctrl and click to select multiple files)",
                # file_types=["*.pdf", "*.epub", "*.docx"],
                file_count="multiple",
            )
            upload_button.upload(upload_files, upload_button, file_output)

        with gr.Tab("Query docs"):
            # interactive chat
            chatbot = gr.Chatbot()
            msg = gr.Textbox(label="Query")
            clear = gr.Button("Clear")

            def respond(message, chat_history):
                # bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
                if ns.qa is None:  # no files processed yet
                    bot_message = "Upload some file(s) for processing first."
                    chat_history.append((message, bot_message))
                    return "", chat_history
                try:
                    res = ns.qa(message)
                    answer, docs = res["result"], res["source_documents"]
                    bot_message = f"{answer} ({docs})"
                except Exception as exc:
                    logger.error(exc)
                    bot_message = f"bummer! {exc}"

                chat_history.append((message, bot_message))

                return "", chat_history

            msg.submit(respond, [msg, chatbot], [msg, chatbot])
            clear.click(lambda: None, None, chatbot, queue=False)

    try:
        from google import colab

        share = True  # start share when in colab
    except Exception:
        share = False

    demo.launch(share=share)


if __name__ == "__main__":
    main()

_ = """
run_localgpt
device = 'cpu'
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
    model_name=,
    model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()

llm = gen_local_llm()  # "TheBloke/vicuna-7B-1.1-HF" 12G?

qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)

query = 'a'
res = qa(query)

"""