Spaces:
Runtime error
Runtime error
File size: 12,518 Bytes
deeaab0 86dc97a deeaab0 7743097 4f331cc deeaab0 4f331cc f1dfff2 89dc142 deeaab0 f1dfff2 deeaab0 89dc142 deeaab0 4f331cc 89dc142 deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 f1dfff2 deeaab0 f1dfff2 deeaab0 4f331cc deeaab0 4f331cc 89dc142 deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 4f331cc deeaab0 86dc97a 28743d9 89dc142 4f331cc 89dc142 4f331cc 89dc142 4f331cc deeaab0 89dc142 86dc97a 4f331cc 7743097 74b4e24 7743097 ce667dc 74b4e24 ce667dc deeaab0 7743097 74b4e24 7743097 4f331cc 28743d9 f1dfff2 7743097 4f331cc 7743097 4f331cc 86dc97a deeaab0 4f331cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
"""Refer to
https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
https://python.langchain.com/en/latest/getting_started/tutorials.html
"""
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module
import os
import time
from pathlib import Path
from textwrap import dedent
from types import SimpleNamespace
import gradio as gr
from charset_normalizer import detect
from chromadb.config import Settings
from epub2txt import epub2txt
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
from langchain.document_loaders import (
CSVLoader,
Docx2txtLoader,
PDFMinerLoader,
TextLoader,
)
# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import (
CharacterTextSplitter,
RecursiveCharacterTextSplitter,
)
# FAISS instead of PineCone
from langchain.vectorstores import FAISS, Chroma
from loguru import logger
from PyPDF2 import PdfReader # localgpt
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
# import click
# from typing import List
# from utils import xlxs_to_csv
# load possible env such as OPENAI_API_KEY
# from dotenv import load_dotenv
# load_dotenv()load_dotenv()
# fix timezone
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False,
)
ns = SimpleNamespace(qa=None)
def load_single_document(file_path: str | Path) -> Document:
"""ingest.py"""
# Loads a single document from a file path
# encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
if file_path.endswith(".txt"):
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Something is fishy, return empty str "
)
return Document(page_content="", metadata={"source": file_path})
try:
loader = TextLoader(file_path, encoding=encoding)
except Exception as exc:
logger.warning(f" {exc}, return dummy ")
return Document(page_content="", metadata={"source": file_path})
elif file_path.endswith(".pdf"):
loader = PDFMinerLoader(file_path)
elif file_path.endswith(".csv"):
loader = CSVLoader(file_path)
elif Path(file_path).suffix in [".docx"]:
try:
loader = Docx2txtLoader(file_path)
except Exception as exc:
logger.error(f" {file_path} errors: {exc}")
return Document(page_content="", metadata={"source": file_path})
elif Path(file_path).suffix in [".epub"]: # for epub? epub2txt unstructured
try:
_ = epub2txt(file_path)
except Exception as exc:
logger.error(f" {file_path} errors: {exc}")
return Document(page_content="", metadata={"source": file_path})
return Document(page_content=_, metadata={"source": file_path})
else:
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Likely binary files, return empty str "
)
return Document(page_content="", metadata={"source": file_path})
try:
loader = TextLoader(file_path)
except Exception as exc:
logger.error(f" {exc}, returnning empty string")
return Document(page_content="", metadata={"source": file_path})
return loader.load()[0]
def get_pdf_text(pdf_docs):
"""docs-chat."""
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
"""docs-chat."""
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
"""docs-chat."""
# embeddings = OpenAIEmbeddings()
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
logger.info(f"Loading {model_name}")
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
logger.info(f"Done loading {model_name}")
logger.info(
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
logger.info(
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
)
return vectorstore
def greet(name):
"""Test."""
logger.debug(f" name: [{name}] ")
return "Hello " + name + "!!"
def upload_files(files):
"""Upload files."""
file_paths = [file.name for file in files]
logger.info(file_paths)
res = ingest(file_paths)
logger.info("Processed:\n{res}")
del res
ns.qa = load_qa()
# return [str(elm) for elm in res]
return file_paths
# return ingest(file_paths)
def ingest(
file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type="cpu"
):
"""Gen Chroma db.
torch.cuda.is_available()
file_paths =
['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py',
'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md',
'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt']
"""
logger.info("Doing ingest...")
if device_type in ["cpu", "CPU"]:
device = "cpu"
elif device_type in ["mps", "MPS"]:
device = "mps"
else:
device = "cuda"
# Load documents and split in chunks
# logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
# documents = load_documents(SOURCE_DIRECTORY)
documents = []
for file_path in file_paths:
documents.append(load_single_document(f"{file_path}"))
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
logger.info(f"Loaded {len(documents)} documents ")
logger.info(f"Split into {len(texts)} chunks of text")
# Create embeddings
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
db.persist()
db = None
logger.info("Done ingest")
return [
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
for doc in documents
]
# https://huggingface.co/TheBloke/vicuna-7B-1.1-HF
def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
"""Gen a local llm.
localgpt run_localgpt
"""
tokenizer = LlamaTokenizer.from_pretrained(model_id)
model = LlamaForCausalLM.from_pretrained(
model_id,
# load_in_8bit=True, # set these options if your GPU supports them!
# device_map=1#'auto',
# torch_dtype=torch.float16,
# low_cpu_mem_usage=True
)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=2048,
temperature=0,
top_p=0.95,
repetition_penalty=1.15,
)
local_llm = HuggingFacePipeline(pipeline=pipe)
return local_llm
def load_qa(device: str = "cpu", model_name: str = "hkunlp/instructor-base"):
"""Gen qa."""
logger.info("Doing qa")
# device = 'cpu'
# model_name = "hkunlp/instructor-xl"
# model_name = "hkunlp/instructor-large"
# model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=embeddings,
client_settings=CHROMA_SETTINGS,
)
retriever = db.as_retriever()
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
qa = RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
)
logger.info("Done qa")
return qa
def main1():
"""Lump codes"""
with gr.Blocks() as demo:
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
demo.launch()
def main():
"""Do blocks."""
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
openai_api_key = os.getenv("OPENAI_API_KEY")
logger.info(f"openai_api_key (hf space SECRETS/env): {openai_api_key}")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# name = gr.Textbox(label="Name")
# greet_btn = gr.Button("Submit")
# output = gr.Textbox(label="Output Box")
# greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
with gr.Accordion("Info", open=False):
_ = """
# localgpt
Talk to your docs (.pdf, .docx, .epub, .txt .md and
other text docs). It
takes quite a while to ingest docs (10-30 min. depending
on net, RAM, CPU etc.).
"""
gr.Markdown(dedent(_))
# with gr.Accordion("Upload files", open=True):
with gr.Tab("Upload files"):
# Upload files and generate embeddings database
file_output = gr.File()
upload_button = gr.UploadButton(
"Click to upload files (Hold ctrl and click to select multiple files)",
# file_types=["*.pdf", "*.epub", "*.docx"],
file_count="multiple",
)
upload_button.upload(upload_files, upload_button, file_output)
with gr.Tab("Query docs"):
# interactive chat
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Query")
clear = gr.Button("Clear")
def respond(message, chat_history):
# bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
if ns.qa is None: # no files processed yet
bot_message = "Upload some file(s) for processing first."
chat_history.append((message, bot_message))
return "", chat_history
try:
res = ns.qa(message)
answer, docs = res["result"], res["source_documents"]
bot_message = f"{answer} ({docs})"
except Exception as exc:
logger.error(exc)
bot_message = f"bummer! {exc}"
chat_history.append((message, bot_message))
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
try:
from google import colab
share = True # start share when in colab
except Exception:
share = False
demo.launch(share=share)
if __name__ == "__main__":
main()
_ = """
run_localgpt
device = 'cpu'
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
model_name=,
model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
query = 'a'
res = qa(query)
"""
|