Spaces:
Runtime error
Runtime error
ffreemt
commited on
Commit
·
e831b10
1
Parent(s):
7e0d59b
Update main.py
Browse files- README.md +1 -1
- app.py +151 -78
- docs/test2.txt +2 -0
- main.py +50 -0
- requirements-freeze.txt +179 -0
- requirements-win10-cpu.txt +33 -0
- requirements.txt +2 -2
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: green
|
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.33.1
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
|
|
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.33.1
|
| 8 |
+
app_file: main.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
app.py
CHANGED
|
@@ -19,7 +19,7 @@ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20
|
|
| 19 |
texts = text_splitter.split_documents(docs)
|
| 20 |
|
| 21 |
model_name = "hkunlp/instructor-base"
|
| 22 |
-
|
| 23 |
model_name=model_name, model_kwargs={"device": device}
|
| 24 |
)
|
| 25 |
|
|
@@ -28,11 +28,11 @@ embeddings = HuggingFaceInstructEmbeddings(
|
|
| 28 |
# both 99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s
|
| 29 |
# chunks = len / 800
|
| 30 |
|
| 31 |
-
db = Chroma.from_documents(texts,
|
| 32 |
|
| 33 |
db = Chroma.from_documents(
|
| 34 |
texts,
|
| 35 |
-
|
| 36 |
persist_directory=PERSIST_DIRECTORY,
|
| 37 |
client_settings=CHROMA_SETTINGS,
|
| 38 |
)
|
|
@@ -126,7 +126,8 @@ CHROMA_SETTINGS = Settings(
|
|
| 126 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 127 |
|
| 128 |
ns_initial = SimpleNamespace(
|
| 129 |
-
|
|
|
|
| 130 |
ingest_done=None,
|
| 131 |
files_info=None,
|
| 132 |
files_uploaded=[],
|
|
@@ -229,17 +230,17 @@ def get_vectorstore(
|
|
| 229 |
persist=True,
|
| 230 |
):
|
| 231 |
"""Gne vectorstore."""
|
| 232 |
-
#
|
| 233 |
# for HuggingFaceInstructEmbeddings
|
| 234 |
model_name = "hkunlp/instructor-xl"
|
| 235 |
model_name = "hkunlp/instructor-large"
|
| 236 |
model_name = "hkunlp/instructor-base"
|
| 237 |
|
| 238 |
-
#
|
| 239 |
|
| 240 |
model_name = MODEL_NAME
|
| 241 |
logger.info(f"Loading {model_name}")
|
| 242 |
-
|
| 243 |
logger.info(f"Done loading {model_name}")
|
| 244 |
|
| 245 |
if vectorstore is None:
|
|
@@ -247,20 +248,20 @@ def get_vectorstore(
|
|
| 247 |
|
| 248 |
if vectorstore.lower() in ["chroma"]:
|
| 249 |
logger.info(
|
| 250 |
-
"Doing vectorstore Chroma.from_texts(texts=text_chunks, embedding=
|
| 251 |
)
|
| 252 |
if persist:
|
| 253 |
vectorstore = Chroma.from_texts(
|
| 254 |
texts=text_chunks,
|
| 255 |
-
embedding=
|
| 256 |
persist_directory=PERSIST_DIRECTORY,
|
| 257 |
client_settings=CHROMA_SETTINGS,
|
| 258 |
)
|
| 259 |
else:
|
| 260 |
-
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=
|
| 261 |
|
| 262 |
logger.info(
|
| 263 |
-
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=
|
| 264 |
)
|
| 265 |
|
| 266 |
return vectorstore
|
|
@@ -268,11 +269,11 @@ def get_vectorstore(
|
|
| 268 |
# if vectorstore.lower() not in ['chroma']
|
| 269 |
# TODO handle other cases
|
| 270 |
logger.info(
|
| 271 |
-
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=
|
| 272 |
)
|
| 273 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=
|
| 274 |
logger.info(
|
| 275 |
-
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=
|
| 276 |
)
|
| 277 |
|
| 278 |
return vectorstore
|
|
@@ -308,9 +309,7 @@ def process_files(
|
|
| 308 |
# wait for update before querying new ns.qa
|
| 309 |
ns.ingest_done = False
|
| 310 |
|
| 311 |
-
logger.debug(f"{ns.files_uploaded}")
|
| 312 |
-
|
| 313 |
-
logger.info(f"ingest({ns.files_uploaded})...")
|
| 314 |
|
| 315 |
# imgs = [None] * 24
|
| 316 |
# for img in progress.tqdm(imgs, desc="Loading from list"):
|
|
@@ -322,17 +321,25 @@ def process_files(
|
|
| 322 |
# for img in progress.tqdm(img_set, desc="inner list"):
|
| 323 |
# time.sleep(10.1)
|
| 324 |
|
| 325 |
-
# return
|
| 326 |
-
# return f"done file(s)"
|
| 327 |
|
| 328 |
documents = []
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 338 |
chunk_size=ns.chunk_size, chunk_overlap=ns.chunk_overlap
|
|
@@ -340,30 +347,52 @@ def process_files(
|
|
| 340 |
texts = text_splitter.split_documents(documents)
|
| 341 |
|
| 342 |
logger.info(f"Loaded {len(ns.files_uploaded)} files ")
|
| 343 |
-
logger.info(f"Loaded {len(documents)}
|
| 344 |
-
logger.info(f"Split into {len(texts)}
|
| 345 |
-
|
| 346 |
-
#
|
| 347 |
-
if ns.
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
| 357 |
|
| 358 |
total = ceil(len(texts) / 101)
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
mit.chunked_even(texts, 101)
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
ns.ingest_done = True
|
| 369 |
_ = [
|
|
@@ -372,9 +401,55 @@ def process_files(
|
|
| 372 |
]
|
| 373 |
ns.files_info = _
|
| 374 |
|
| 375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
|
| 377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
|
| 379 |
|
| 380 |
# pylint disable=unused-argument
|
|
@@ -424,9 +499,9 @@ def ingest(
|
|
| 424 |
logger.info(f"Loaded {len(documents)} documents ")
|
| 425 |
logger.info(f"Split into {len(texts)} chunks of text")
|
| 426 |
|
| 427 |
-
# Create
|
| 428 |
-
#
|
| 429 |
-
|
| 430 |
model_name=model_name, model_kwargs={"device": device}
|
| 431 |
)
|
| 432 |
|
|
@@ -437,7 +512,7 @@ def ingest(
|
|
| 437 |
# mit.chunked_even(texts, 100)
|
| 438 |
db = Chroma(
|
| 439 |
# persist_directory=PERSIST_DIRECTORY,
|
| 440 |
-
embedding_function=
|
| 441 |
# client_settings=CHROMA_SETTINGS,
|
| 442 |
)
|
| 443 |
# for text in progress.tqdm(
|
|
@@ -448,7 +523,7 @@ def ingest(
|
|
| 448 |
with about_time() as atime: # type: ignore
|
| 449 |
db = Chroma.from_documents(
|
| 450 |
texts,
|
| 451 |
-
|
| 452 |
persist_directory=PERSIST_DIRECTORY,
|
| 453 |
client_settings=CHROMA_SETTINGS,
|
| 454 |
)
|
|
@@ -512,7 +587,14 @@ def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
|
|
| 512 |
|
| 513 |
|
| 514 |
def load_qa(device=None, model_name: str = MODEL_NAME):
|
| 515 |
-
"""Gen qa.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
logger.info("Doing qa")
|
| 517 |
if device is None:
|
| 518 |
if torch.cuda.is_available():
|
|
@@ -520,19 +602,14 @@ def load_qa(device=None, model_name: str = MODEL_NAME):
|
|
| 520 |
else:
|
| 521 |
device = "cpu"
|
| 522 |
|
| 523 |
-
|
| 524 |
-
# model_name = "hkunlp/instructor-xl"
|
| 525 |
-
# model_name = "hkunlp/instructor-large"
|
| 526 |
-
# model_name = "hkunlp/instructor-base"
|
| 527 |
-
# embeddings = HuggingFaceInstructEmbeddings(
|
| 528 |
-
embeddings = SentenceTransformerEmbeddings(
|
| 529 |
model_name=model_name, model_kwargs={"device": device}
|
| 530 |
)
|
| 531 |
# xl 4.96G, large 3.5G,
|
| 532 |
|
| 533 |
db = Chroma(
|
| 534 |
persist_directory=PERSIST_DIRECTORY,
|
| 535 |
-
embedding_function=
|
| 536 |
client_settings=CHROMA_SETTINGS,
|
| 537 |
)
|
| 538 |
retriever = db.as_retriever()
|
|
@@ -552,8 +629,7 @@ def load_qa(device=None, model_name: str = MODEL_NAME):
|
|
| 552 |
|
| 553 |
return qa
|
| 554 |
|
| 555 |
-
#
|
| 556 |
-
|
| 557 |
# pylint: disable=unreachable
|
| 558 |
|
| 559 |
# model = 'gpt-3.5-turbo', default text-davinci-003
|
|
@@ -615,7 +691,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 615 |
gr.Markdown(dedent(_))
|
| 616 |
|
| 617 |
with gr.Tab("Upload files"):
|
| 618 |
-
# Upload files and generate
|
| 619 |
with gr.Row():
|
| 620 |
file_output = gr.File()
|
| 621 |
# file_output = gr.Text()
|
|
@@ -626,9 +702,10 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 626 |
file_count="multiple",
|
| 627 |
)
|
| 628 |
with gr.Row():
|
| 629 |
-
text2 = gr.Textbox("
|
| 630 |
-
process_btn = gr.Button("Click to
|
| 631 |
-
|
|
|
|
| 632 |
|
| 633 |
with gr.Tab("Query docs"):
|
| 634 |
# interactive chat
|
|
@@ -643,21 +720,24 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 643 |
ns = deepcopy(ns_initial)
|
| 644 |
return f"reset done: ns={ns}"
|
| 645 |
|
| 646 |
-
reset_btn.click(reset_all, [], text2)
|
| 647 |
|
| 648 |
upload_button.upload(upload_files, upload_button, file_output)
|
| 649 |
process_btn.click(process_files, [], text2)
|
| 650 |
|
| 651 |
def respond(message, chat_history):
|
| 652 |
"""Gen response."""
|
|
|
|
| 653 |
if ns.ingest_done is None: # no files processed yet
|
| 654 |
bot_message = "Upload some file(s) for processing first."
|
| 655 |
chat_history.append((message, bot_message))
|
| 656 |
return "", chat_history
|
| 657 |
|
|
|
|
| 658 |
if not ns.ingest_done: # embedding database not doen yet
|
| 659 |
bot_message = (
|
| 660 |
"Waiting for ingest (embedding) to finish, "
|
|
|
|
| 661 |
"be patient... You can switch the 'Upload files' "
|
| 662 |
"Tab to check"
|
| 663 |
)
|
|
@@ -695,13 +775,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 695 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 696 |
|
| 697 |
if __name__ == "__main__":
|
| 698 |
-
# main()
|
| 699 |
-
try:
|
| 700 |
-
from google import colab # noqa # type: ignore
|
| 701 |
-
|
| 702 |
-
share = True # start share when in colab
|
| 703 |
-
except Exception:
|
| 704 |
-
share = False
|
| 705 |
demo.queue(concurrency_count=20).launch(share=share)
|
| 706 |
|
| 707 |
_ = """
|
|
@@ -710,12 +783,12 @@ device = 'cpu'
|
|
| 710 |
model_name = "hkunlp/instructor-xl"
|
| 711 |
model_name = "hkunlp/instructor-large"
|
| 712 |
model_name = "hkunlp/instructor-base"
|
| 713 |
-
|
| 714 |
model_name=,
|
| 715 |
model_kwargs={"device": device}
|
| 716 |
)
|
| 717 |
# xl 4.96G, large 3.5G,
|
| 718 |
-
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=
|
| 719 |
retriever = db.as_retriever()
|
| 720 |
|
| 721 |
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
|
|
|
|
| 19 |
texts = text_splitter.split_documents(docs)
|
| 20 |
|
| 21 |
model_name = "hkunlp/instructor-base"
|
| 22 |
+
embedding = HuggingFaceInstructEmbeddings(
|
| 23 |
model_name=model_name, model_kwargs={"device": device}
|
| 24 |
)
|
| 25 |
|
|
|
|
| 28 |
# both 99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s
|
| 29 |
# chunks = len / 800
|
| 30 |
|
| 31 |
+
db = Chroma.from_documents(texts, embedding)
|
| 32 |
|
| 33 |
db = Chroma.from_documents(
|
| 34 |
texts,
|
| 35 |
+
embedding,
|
| 36 |
persist_directory=PERSIST_DIRECTORY,
|
| 37 |
client_settings=CHROMA_SETTINGS,
|
| 38 |
)
|
|
|
|
| 126 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 127 |
|
| 128 |
ns_initial = SimpleNamespace(
|
| 129 |
+
db=None,
|
| 130 |
+
qa=None,
|
| 131 |
ingest_done=None,
|
| 132 |
files_info=None,
|
| 133 |
files_uploaded=[],
|
|
|
|
| 230 |
persist=True,
|
| 231 |
):
|
| 232 |
"""Gne vectorstore."""
|
| 233 |
+
# embedding = OpenAIEmbeddings()
|
| 234 |
# for HuggingFaceInstructEmbeddings
|
| 235 |
model_name = "hkunlp/instructor-xl"
|
| 236 |
model_name = "hkunlp/instructor-large"
|
| 237 |
model_name = "hkunlp/instructor-base"
|
| 238 |
|
| 239 |
+
# embedding = HuggingFaceInstructEmbeddings(model_name=model_name)
|
| 240 |
|
| 241 |
model_name = MODEL_NAME
|
| 242 |
logger.info(f"Loading {model_name}")
|
| 243 |
+
embedding = SentenceTransformerEmbeddings(model_name=model_name)
|
| 244 |
logger.info(f"Done loading {model_name}")
|
| 245 |
|
| 246 |
if vectorstore is None:
|
|
|
|
| 248 |
|
| 249 |
if vectorstore.lower() in ["chroma"]:
|
| 250 |
logger.info(
|
| 251 |
+
"Doing vectorstore Chroma.from_texts(texts=text_chunks, embedding=embedding)"
|
| 252 |
)
|
| 253 |
if persist:
|
| 254 |
vectorstore = Chroma.from_texts(
|
| 255 |
texts=text_chunks,
|
| 256 |
+
embedding=embedding,
|
| 257 |
persist_directory=PERSIST_DIRECTORY,
|
| 258 |
client_settings=CHROMA_SETTINGS,
|
| 259 |
)
|
| 260 |
else:
|
| 261 |
+
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embedding)
|
| 262 |
|
| 263 |
logger.info(
|
| 264 |
+
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
|
| 265 |
)
|
| 266 |
|
| 267 |
return vectorstore
|
|
|
|
| 269 |
# if vectorstore.lower() not in ['chroma']
|
| 270 |
# TODO handle other cases
|
| 271 |
logger.info(
|
| 272 |
+
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
|
| 273 |
)
|
| 274 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embedding)
|
| 275 |
logger.info(
|
| 276 |
+
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
|
| 277 |
)
|
| 278 |
|
| 279 |
return vectorstore
|
|
|
|
| 309 |
# wait for update before querying new ns.qa
|
| 310 |
ns.ingest_done = False
|
| 311 |
|
| 312 |
+
logger.debug(f"ns.files_uploaded: {ns.files_uploaded}")
|
|
|
|
|
|
|
| 313 |
|
| 314 |
# imgs = [None] * 24
|
| 315 |
# for img in progress.tqdm(imgs, desc="Loading from list"):
|
|
|
|
| 321 |
# for img in progress.tqdm(img_set, desc="inner list"):
|
| 322 |
# time.sleep(10.1)
|
| 323 |
|
| 324 |
+
# return "done..."
|
|
|
|
| 325 |
|
| 326 |
documents = []
|
| 327 |
+
if progress is None:
|
| 328 |
+
for file_path in ns.files_uploaded:
|
| 329 |
+
logger.debug(f"-Doing {file_path}")
|
| 330 |
+
try:
|
| 331 |
+
documents.extend(load_single_document(f"{file_path}"))
|
| 332 |
+
logger.debug("-Done reading files.")
|
| 333 |
+
except Exception as exc:
|
| 334 |
+
logger.error(f"-{file_path}: {exc}")
|
| 335 |
+
else:
|
| 336 |
+
for file_path in progress.tqdm(ns.files_uploaded, desc="Reading file(s)"):
|
| 337 |
+
logger.debug(f"Doing {file_path}")
|
| 338 |
+
try:
|
| 339 |
+
documents.extend(load_single_document(f"{file_path}"))
|
| 340 |
+
logger.debug("Done reading files.")
|
| 341 |
+
except Exception as exc:
|
| 342 |
+
logger.error(f"{file_path}: {exc}")
|
| 343 |
|
| 344 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 345 |
chunk_size=ns.chunk_size, chunk_overlap=ns.chunk_overlap
|
|
|
|
| 347 |
texts = text_splitter.split_documents(documents)
|
| 348 |
|
| 349 |
logger.info(f"Loaded {len(ns.files_uploaded)} files ")
|
| 350 |
+
logger.info(f"Loaded {len(documents)} document(s) ")
|
| 351 |
+
logger.info(f"Split into {len(texts)} chunk(s) of text")
|
| 352 |
+
|
| 353 |
+
# initialize if necessary
|
| 354 |
+
if ns.db is None:
|
| 355 |
+
logger.info(f"loading {ns.model_name:}")
|
| 356 |
+
for _ in progress.tqdm(range(1), desc="diggin..."):
|
| 357 |
+
embedding = SentenceTransformerEmbeddings(
|
| 358 |
+
model_name=ns.model_name, model_kwargs={"device": DEVICE}
|
| 359 |
+
)
|
| 360 |
|
| 361 |
+
logger.info("creating vectorstore")
|
| 362 |
+
ns.db = Chroma(
|
| 363 |
+
# persist_directory=PERSIST_DIRECTORY,
|
| 364 |
+
embedding_function=embedding,
|
| 365 |
+
# client_settings=CHROMA_SETTINGS,
|
| 366 |
+
)
|
| 367 |
+
logger.info("done creating vectorstore")
|
| 368 |
|
| 369 |
total = ceil(len(texts) / 101)
|
| 370 |
+
if progress is None:
|
| 371 |
+
# for text in progress.tqdm(
|
| 372 |
+
for idx, text in enumerate(mit.chunked_even(texts, 101)):
|
| 373 |
+
logger.debug(f"-{idx + 1} of {total}")
|
| 374 |
+
ns.db.add_documents(documents=text)
|
| 375 |
+
else:
|
| 376 |
+
# for text in progress.tqdm(
|
| 377 |
+
for idx, text in enumerate(progress.tqdm(
|
| 378 |
+
mit.chunked_even(texts, 101),
|
| 379 |
+
total=total,
|
| 380 |
+
desc="Processing docs",
|
| 381 |
+
)):
|
| 382 |
+
logger.debug(f"{idx + 1} of {total}")
|
| 383 |
+
ns.db.add_documents(documents=text)
|
| 384 |
+
logger.debug(f" done all {total}")
|
| 385 |
+
|
| 386 |
+
# ns.qa = load_qa()
|
| 387 |
+
|
| 388 |
+
llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore
|
| 389 |
+
retriever = ns.db.as_retriever()
|
| 390 |
+
ns.qa = RetrievalQA.from_chain_type(
|
| 391 |
+
llm=llm,
|
| 392 |
+
chain_type="stuff",
|
| 393 |
+
retriever=retriever,
|
| 394 |
+
# return_source_documents=True,
|
| 395 |
+
)
|
| 396 |
|
| 397 |
ns.ingest_done = True
|
| 398 |
_ = [
|
|
|
|
| 401 |
]
|
| 402 |
ns.files_info = _
|
| 403 |
|
| 404 |
+
logger.debug(f"{ns.ingest_done=}, exit process_files")
|
| 405 |
+
return f"done file(s): {dict(ns.files_info)}"
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def respond(message, chat_history):
|
| 409 |
+
"""Gen response."""
|
| 410 |
+
logger.debug(f"{ns.files_uploaded=}")
|
| 411 |
+
if not ns.files_uploaded: # no files processed yet
|
| 412 |
+
bot_message = "Upload some file(s) for processing first."
|
| 413 |
+
chat_history.append((message, bot_message))
|
| 414 |
+
return "", chat_history
|
| 415 |
|
| 416 |
+
logger.debug(f"{ns.ingest_done=}")
|
| 417 |
+
if not ns.ingest_done: # embedding database not doen yet
|
| 418 |
+
bot_message = (
|
| 419 |
+
"Waiting for ingest (embedding) to finish, "
|
| 420 |
+
"be patient... You can switch the 'Upload files' "
|
| 421 |
+
"Tab to check"
|
| 422 |
+
)
|
| 423 |
+
chat_history.append((message, bot_message))
|
| 424 |
+
return "", chat_history
|
| 425 |
+
|
| 426 |
+
_ = """
|
| 427 |
+
if ns.qa is None: # load qa one time
|
| 428 |
+
logger.info("Loading qa, need to do just one time.")
|
| 429 |
+
ns.qa = load_qa()
|
| 430 |
+
logger.info("Done loading qa, need to do just one time.")
|
| 431 |
+
# """
|
| 432 |
+
logger.debug(f"{ns.qa=}")
|
| 433 |
+
if ns.qa is None:
|
| 434 |
+
bot_message = "Looks like the bot is not ready. Try again later..."
|
| 435 |
+
chat_history.append((message, bot_message))
|
| 436 |
+
return "", chat_history
|
| 437 |
+
|
| 438 |
+
try:
|
| 439 |
+
res = ns.qa(message)
|
| 440 |
+
answer = res.get("result")
|
| 441 |
+
docs = res.get("source_documents")
|
| 442 |
+
if docs:
|
| 443 |
+
bot_message = f"{answer}\n({docs})"
|
| 444 |
+
else:
|
| 445 |
+
bot_message = f"{answer}"
|
| 446 |
+
except Exception as exc:
|
| 447 |
+
logger.error(exc)
|
| 448 |
+
bot_message = f"bummer! {exc}"
|
| 449 |
+
|
| 450 |
+
chat_history.append((message, bot_message))
|
| 451 |
+
|
| 452 |
+
return "", chat_history
|
| 453 |
|
| 454 |
|
| 455 |
# pylint disable=unused-argument
|
|
|
|
| 499 |
logger.info(f"Loaded {len(documents)} documents ")
|
| 500 |
logger.info(f"Split into {len(texts)} chunks of text")
|
| 501 |
|
| 502 |
+
# Create embedding
|
| 503 |
+
# embedding = HuggingFaceInstructEmbeddings(
|
| 504 |
+
embedding = SentenceTransformerEmbeddings(
|
| 505 |
model_name=model_name, model_kwargs={"device": device}
|
| 506 |
)
|
| 507 |
|
|
|
|
| 512 |
# mit.chunked_even(texts, 100)
|
| 513 |
db = Chroma(
|
| 514 |
# persist_directory=PERSIST_DIRECTORY,
|
| 515 |
+
embedding_function=embedding,
|
| 516 |
# client_settings=CHROMA_SETTINGS,
|
| 517 |
)
|
| 518 |
# for text in progress.tqdm(
|
|
|
|
| 523 |
with about_time() as atime: # type: ignore
|
| 524 |
db = Chroma.from_documents(
|
| 525 |
texts,
|
| 526 |
+
embedding,
|
| 527 |
persist_directory=PERSIST_DIRECTORY,
|
| 528 |
client_settings=CHROMA_SETTINGS,
|
| 529 |
)
|
|
|
|
| 587 |
|
| 588 |
|
| 589 |
def load_qa(device=None, model_name: str = MODEL_NAME):
|
| 590 |
+
"""Gen qa.
|
| 591 |
+
|
| 592 |
+
device = 'cpu'
|
| 593 |
+
model_name = "hkunlp/instructor-xl"
|
| 594 |
+
model_name = "hkunlp/instructor-large"
|
| 595 |
+
model_name = "hkunlp/instructor-base"
|
| 596 |
+
embedding = HuggingFaceInstructEmbeddings(
|
| 597 |
+
"""
|
| 598 |
logger.info("Doing qa")
|
| 599 |
if device is None:
|
| 600 |
if torch.cuda.is_available():
|
|
|
|
| 602 |
else:
|
| 603 |
device = "cpu"
|
| 604 |
|
| 605 |
+
embedding = SentenceTransformerEmbeddings(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
model_name=model_name, model_kwargs={"device": device}
|
| 607 |
)
|
| 608 |
# xl 4.96G, large 3.5G,
|
| 609 |
|
| 610 |
db = Chroma(
|
| 611 |
persist_directory=PERSIST_DIRECTORY,
|
| 612 |
+
embedding_function=embedding,
|
| 613 |
client_settings=CHROMA_SETTINGS,
|
| 614 |
)
|
| 615 |
retriever = db.as_retriever()
|
|
|
|
| 629 |
|
| 630 |
return qa
|
| 631 |
|
| 632 |
+
# TODO: conversation_chain
|
|
|
|
| 633 |
# pylint: disable=unreachable
|
| 634 |
|
| 635 |
# model = 'gpt-3.5-turbo', default text-davinci-003
|
|
|
|
| 691 |
gr.Markdown(dedent(_))
|
| 692 |
|
| 693 |
with gr.Tab("Upload files"):
|
| 694 |
+
# Upload files and generate vectorstore
|
| 695 |
with gr.Row():
|
| 696 |
file_output = gr.File()
|
| 697 |
# file_output = gr.Text()
|
|
|
|
| 702 |
file_count="multiple",
|
| 703 |
)
|
| 704 |
with gr.Row():
|
| 705 |
+
text2 = gr.Textbox("Gen embedding")
|
| 706 |
+
process_btn = gr.Button("Click to embed")
|
| 707 |
+
|
| 708 |
+
# reset_btn = gr.Button("Reset everything", visibile=False)
|
| 709 |
|
| 710 |
with gr.Tab("Query docs"):
|
| 711 |
# interactive chat
|
|
|
|
| 720 |
ns = deepcopy(ns_initial)
|
| 721 |
return f"reset done: ns={ns}"
|
| 722 |
|
| 723 |
+
# reset_btn.click(reset_all, [], text2)
|
| 724 |
|
| 725 |
upload_button.upload(upload_files, upload_button, file_output)
|
| 726 |
process_btn.click(process_files, [], text2)
|
| 727 |
|
| 728 |
def respond(message, chat_history):
|
| 729 |
"""Gen response."""
|
| 730 |
+
logger.info(f"{ns.ingest_done=}")
|
| 731 |
if ns.ingest_done is None: # no files processed yet
|
| 732 |
bot_message = "Upload some file(s) for processing first."
|
| 733 |
chat_history.append((message, bot_message))
|
| 734 |
return "", chat_history
|
| 735 |
|
| 736 |
+
logger.info(f"{ns.ingest_done=}")
|
| 737 |
if not ns.ingest_done: # embedding database not doen yet
|
| 738 |
bot_message = (
|
| 739 |
"Waiting for ingest (embedding) to finish, "
|
| 740 |
+
f"({ns.ingest_done=})"
|
| 741 |
"be patient... You can switch the 'Upload files' "
|
| 742 |
"Tab to check"
|
| 743 |
)
|
|
|
|
| 775 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 776 |
|
| 777 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 778 |
demo.queue(concurrency_count=20).launch(share=share)
|
| 779 |
|
| 780 |
_ = """
|
|
|
|
| 783 |
model_name = "hkunlp/instructor-xl"
|
| 784 |
model_name = "hkunlp/instructor-large"
|
| 785 |
model_name = "hkunlp/instructor-base"
|
| 786 |
+
embedding = HuggingFaceInstructEmbeddings(
|
| 787 |
model_name=,
|
| 788 |
model_kwargs={"device": device}
|
| 789 |
)
|
| 790 |
# xl 4.96G, large 3.5G,
|
| 791 |
+
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embedding, client_settings=CHROMA_SETTINGS)
|
| 792 |
retriever = db.as_retriever()
|
| 793 |
|
| 794 |
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
|
docs/test2.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
总 纲
|
| 2 |
+
中国共产党是中国工人阶级的先锋队,同时是中国人民和中华民族的先锋队,是中国特色社会主义事业的领导核心,代表中国先进生产力的发展要求,代表中国先进文化的前进方向,代表中国最广大人民的根本利益。党的最高理想和最终目标是实现共产主义。
|
main.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Test."""
|
| 2 |
+
# pylint: disable=invalid-name, unused-import, broad-except,
|
| 3 |
+
from copy import deepcopy
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from app import ingest, ns, ns_initial, process_files, upload_files, respond
|
| 7 |
+
from load_api_key import load_api_key, pk_base, sk_base
|
| 8 |
+
from loguru import logger
|
| 9 |
+
|
| 10 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 11 |
+
with gr.Tab("Upload files"):
|
| 12 |
+
# Upload files and generate vectorstore
|
| 13 |
+
with gr.Row():
|
| 14 |
+
file_output = gr.File()
|
| 15 |
+
# file_output = gr.Text()
|
| 16 |
+
# file_output = gr.DataFrame()
|
| 17 |
+
upload_button = gr.UploadButton(
|
| 18 |
+
"Click to upload",
|
| 19 |
+
# file_types=["*.pdf", "*.epub", "*.docx"],
|
| 20 |
+
file_count="multiple",
|
| 21 |
+
)
|
| 22 |
+
with gr.Row():
|
| 23 |
+
text2 = gr.Textbox("Gen embedding")
|
| 24 |
+
process_btn = gr.Button("Click to embed")
|
| 25 |
+
|
| 26 |
+
reset_btn = gr.Button("Reset everything", visible=False)
|
| 27 |
+
|
| 28 |
+
with gr.Tab("Query docs"):
|
| 29 |
+
# interactive chat
|
| 30 |
+
chatbot = gr.Chatbot()
|
| 31 |
+
msg = gr.Textbox(label="Query")
|
| 32 |
+
clear = gr.Button("Clear")
|
| 33 |
+
|
| 34 |
+
# actions
|
| 35 |
+
def reset_all():
|
| 36 |
+
"""Reset ns."""
|
| 37 |
+
# global ns
|
| 38 |
+
globals().update(**{"ns": deepcopy(ns_initial)})
|
| 39 |
+
return f"reset done: ns={ns}"
|
| 40 |
+
|
| 41 |
+
reset_btn.click(reset_all, [], text2)
|
| 42 |
+
|
| 43 |
+
upload_button.upload(upload_files, upload_button, file_output)
|
| 44 |
+
process_btn.click(process_files, [], text2)
|
| 45 |
+
|
| 46 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 47 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
demo.queue(concurrency_count=20).launch()
|
requirements-freeze.txt
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
about-time==4.2.1
|
| 2 |
+
absl-py==0.11.0
|
| 3 |
+
accelerate==0.19.0
|
| 4 |
+
aiofiles==23.1.0
|
| 5 |
+
aiohttp==3.8.4
|
| 6 |
+
aiosignal==1.3.1
|
| 7 |
+
altair==5.0.1
|
| 8 |
+
analytics-python==1.4.post1
|
| 9 |
+
anyio==3.7.0
|
| 10 |
+
argilla==1.8.0
|
| 11 |
+
astroid==2.15.5
|
| 12 |
+
asttokens==2.2.1
|
| 13 |
+
async-timeout==4.0.2
|
| 14 |
+
attrs==23.1.0
|
| 15 |
+
backcall==0.2.0
|
| 16 |
+
backoff==1.10.0
|
| 17 |
+
bcrypt==4.0.1
|
| 18 |
+
bitsandbytes==0.39.0
|
| 19 |
+
black==23.3.0
|
| 20 |
+
certifi==2023.5.7
|
| 21 |
+
cffi==1.15.1
|
| 22 |
+
chardet==5.1.0
|
| 23 |
+
charset-normalizer==3.1.0
|
| 24 |
+
chromadb==0.3.22
|
| 25 |
+
click==8.1.3
|
| 26 |
+
clickhouse-connect==0.5.25
|
| 27 |
+
colorama==0.4.6
|
| 28 |
+
commonmark==0.9.1
|
| 29 |
+
contourpy==1.0.7
|
| 30 |
+
cryptography==41.0.1
|
| 31 |
+
cycler==0.11.0
|
| 32 |
+
dataclasses-json==0.5.7
|
| 33 |
+
decorator==5.1.1
|
| 34 |
+
Deprecated==1.2.14
|
| 35 |
+
dill==0.3.6
|
| 36 |
+
docx2txt==0.8
|
| 37 |
+
duckdb==0.8.0
|
| 38 |
+
EbookLib==0.17.1
|
| 39 |
+
epub2txt==0.1.6
|
| 40 |
+
et-xmlfile==1.1.0
|
| 41 |
+
exceptiongroup==1.1.1
|
| 42 |
+
executing==1.2.0
|
| 43 |
+
faiss-cpu==1.7.4
|
| 44 |
+
fastapi==0.96.0
|
| 45 |
+
ffmpy==0.3.0
|
| 46 |
+
filelock==3.12.0
|
| 47 |
+
fonttools==4.39.4
|
| 48 |
+
frozenlist==1.3.3
|
| 49 |
+
fsspec==2023.5.0
|
| 50 |
+
gradio==3.35.2
|
| 51 |
+
gradio_client==0.2.7
|
| 52 |
+
greenlet==2.0.2
|
| 53 |
+
h11==0.12.0
|
| 54 |
+
hnswlib==0.7.0
|
| 55 |
+
httpcore==0.12.3
|
| 56 |
+
httptools==0.5.0
|
| 57 |
+
httpx==0.16.1
|
| 58 |
+
huggingface-hub==0.15.1
|
| 59 |
+
idna==3.4
|
| 60 |
+
InstructorEmbedding==1.0.1
|
| 61 |
+
ipython==8.14.0
|
| 62 |
+
isort==5.12.0
|
| 63 |
+
jedi==0.18.2
|
| 64 |
+
Jinja2==3.1.2
|
| 65 |
+
joblib==1.2.0
|
| 66 |
+
jsonschema==4.17.3
|
| 67 |
+
kiwisolver==1.4.4
|
| 68 |
+
langchain==0.0.166
|
| 69 |
+
lazy-object-proxy==1.9.0
|
| 70 |
+
linkify-it-py==2.0.2
|
| 71 |
+
llama-cpp-python==0.1.48
|
| 72 |
+
llama-index==0.6.21.post1
|
| 73 |
+
loguru==0.7.0
|
| 74 |
+
logzero==1.7.0
|
| 75 |
+
lxml==4.9.2
|
| 76 |
+
lz4==4.3.2
|
| 77 |
+
Markdown==3.4.3
|
| 78 |
+
markdown-it-py==2.2.0
|
| 79 |
+
MarkupSafe==2.1.3
|
| 80 |
+
marshmallow==3.19.0
|
| 81 |
+
marshmallow-enum==1.5.1
|
| 82 |
+
matplotlib==3.7.1
|
| 83 |
+
matplotlib-inline==0.1.6
|
| 84 |
+
mccabe==0.7.0
|
| 85 |
+
mdit-py-plugins==0.3.3
|
| 86 |
+
mdurl==0.1.2
|
| 87 |
+
monotonic==1.6
|
| 88 |
+
more-itertools==9.1.0
|
| 89 |
+
mpmath==1.3.0
|
| 90 |
+
msg-parser==1.2.0
|
| 91 |
+
multidict==6.0.4
|
| 92 |
+
mypy-extensions==1.0.0
|
| 93 |
+
networkx==3.1
|
| 94 |
+
nltk==3.8.1
|
| 95 |
+
numexpr==2.8.4
|
| 96 |
+
numpy==1.23.5
|
| 97 |
+
olefile==0.46
|
| 98 |
+
openai==0.27.8
|
| 99 |
+
openapi-schema-pydantic==1.2.4
|
| 100 |
+
openpyxl==3.1.2
|
| 101 |
+
orjson==3.9.0
|
| 102 |
+
packaging==23.1
|
| 103 |
+
pandas==1.5.3
|
| 104 |
+
paramiko==3.2.0
|
| 105 |
+
parso==0.8.3
|
| 106 |
+
pathspec==0.11.1
|
| 107 |
+
pdfminer.six==20221105
|
| 108 |
+
pickleshare==0.7.5
|
| 109 |
+
Pillow==9.5.0
|
| 110 |
+
platformdirs==3.5.1
|
| 111 |
+
posthog==3.0.1
|
| 112 |
+
prompt-toolkit==3.0.38
|
| 113 |
+
protobuf==3.20.0
|
| 114 |
+
psutil==5.9.5
|
| 115 |
+
pure-eval==0.2.2
|
| 116 |
+
pycparser==2.21
|
| 117 |
+
pycryptodome==3.18.0
|
| 118 |
+
pydantic==1.10.8
|
| 119 |
+
pydub==0.25.1
|
| 120 |
+
Pygments==2.15.1
|
| 121 |
+
pylint==2.17.4
|
| 122 |
+
PyNaCl==1.5.0
|
| 123 |
+
pypandoc==1.11
|
| 124 |
+
pyparsing==3.0.9
|
| 125 |
+
pypdf==3.9.1
|
| 126 |
+
PyPDF2==3.0.1
|
| 127 |
+
pyrsistent==0.19.3
|
| 128 |
+
python-dateutil==2.8.2
|
| 129 |
+
python-docx==0.8.11
|
| 130 |
+
python-dotenv==1.0.0
|
| 131 |
+
python-magic==0.4.27
|
| 132 |
+
python-multipart==0.0.6
|
| 133 |
+
python-pptx==0.6.21
|
| 134 |
+
pytz==2023.3
|
| 135 |
+
PyYAML==6.0
|
| 136 |
+
regex==2023.6.3
|
| 137 |
+
requests==2.31.0
|
| 138 |
+
rfc3986==1.5.0
|
| 139 |
+
rich==13.0.1
|
| 140 |
+
scikit-learn==1.2.2
|
| 141 |
+
scipy==1.10.1
|
| 142 |
+
semantic-version==2.10.0
|
| 143 |
+
sentence-transformers==2.2.2
|
| 144 |
+
sentencepiece==0.1.99
|
| 145 |
+
six==1.16.0
|
| 146 |
+
sniffio==1.3.0
|
| 147 |
+
SQLAlchemy==2.0.15
|
| 148 |
+
stack-data==0.6.2
|
| 149 |
+
starlette==0.27.0
|
| 150 |
+
sympy==1.12
|
| 151 |
+
tabulate==0.9.0
|
| 152 |
+
tenacity==8.2.2
|
| 153 |
+
threadpoolctl==3.1.0
|
| 154 |
+
tiktoken==0.4.0
|
| 155 |
+
tokenizers==0.13.3
|
| 156 |
+
tomli==2.0.1
|
| 157 |
+
tomlkit==0.11.8
|
| 158 |
+
toolz==0.12.0
|
| 159 |
+
torch==2.0.1
|
| 160 |
+
torchvision==0.15.2
|
| 161 |
+
tqdm==4.65.0
|
| 162 |
+
traitlets==5.9.0
|
| 163 |
+
transformers==4.29.2
|
| 164 |
+
typer==0.9.0
|
| 165 |
+
typing-inspect==0.8.0
|
| 166 |
+
typing_extensions==4.5.0
|
| 167 |
+
tzdata==2023.3
|
| 168 |
+
uc-micro-py==1.0.2
|
| 169 |
+
urllib3==1.26.6
|
| 170 |
+
uvicorn==0.22.0
|
| 171 |
+
watchfiles==0.19.0
|
| 172 |
+
wcwidth==0.2.6
|
| 173 |
+
websockets==11.0.3
|
| 174 |
+
win32-setctime==1.1.0
|
| 175 |
+
wrapt==1.14.1
|
| 176 |
+
xlrd==2.0.1
|
| 177 |
+
XlsxWriter==3.1.2
|
| 178 |
+
yarl==1.9.2
|
| 179 |
+
zstandard==0.21.0
|
requirements-win10-cpu.txt
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain==0.0.166
|
| 2 |
+
chromadb==0.3.22
|
| 3 |
+
llama-cpp-python==0.1.48
|
| 4 |
+
urllib3==1.26.6
|
| 5 |
+
pdfminer.six==20221105
|
| 6 |
+
InstructorEmbedding
|
| 7 |
+
|
| 8 |
+
# required by sentence-transformers
|
| 9 |
+
# do not use the following in windows. it will cause
|
| 10 |
+
# "Throws a silent error if function takes more than 5 seconds #3078" issue https://github.com/gradio-app/gradio/issues/3078
|
| 11 |
+
# --extra-index-url https://download.pytorch.org/whl/cpu
|
| 12 |
+
torch
|
| 13 |
+
torchvision
|
| 14 |
+
sentence-transformers
|
| 15 |
+
faiss-cpu
|
| 16 |
+
huggingface_hub
|
| 17 |
+
transformers
|
| 18 |
+
protobuf==3.20.0
|
| 19 |
+
accelerate
|
| 20 |
+
bitsandbytes
|
| 21 |
+
# click
|
| 22 |
+
openpyxl
|
| 23 |
+
loguru
|
| 24 |
+
gradio
|
| 25 |
+
charset-normalizer
|
| 26 |
+
PyPDF2
|
| 27 |
+
epub2txt
|
| 28 |
+
docx2txt
|
| 29 |
+
|
| 30 |
+
about-time
|
| 31 |
+
openai
|
| 32 |
+
more-itertools
|
| 33 |
+
# tqdm
|
requirements.txt
CHANGED
|
@@ -16,7 +16,7 @@ transformers
|
|
| 16 |
protobuf==3.20.0
|
| 17 |
accelerate
|
| 18 |
bitsandbytes
|
| 19 |
-
click
|
| 20 |
openpyxl
|
| 21 |
loguru
|
| 22 |
gradio
|
|
@@ -28,4 +28,4 @@ docx2txt
|
|
| 28 |
about-time
|
| 29 |
openai
|
| 30 |
more-itertools
|
| 31 |
-
tqdm
|
|
|
|
| 16 |
protobuf==3.20.0
|
| 17 |
accelerate
|
| 18 |
bitsandbytes
|
| 19 |
+
# click
|
| 20 |
openpyxl
|
| 21 |
loguru
|
| 22 |
gradio
|
|
|
|
| 28 |
about-time
|
| 29 |
openai
|
| 30 |
more-itertools
|
| 31 |
+
# tqdm
|