Spaces:
Build error
Build error
freemt
commited on
Commit
·
d5ff673
1
Parent(s):
077e1eb
Update plot_mat
Browse files- data/ps-cn.txt +0 -0
- data/ps-en.txt +0 -0
- package.json +1 -1
- radiobee/__main__.py +203 -88
- radiobee/gen_pset.py +5 -0
- radiobee/plot_cmat.py +145 -0
- radiobee/plot_df.py +74 -47
- radiobee/trim_df.py +30 -0
- run-radiobee.bat +2 -1
data/ps-cn.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/ps-en.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
package.json
CHANGED
|
@@ -8,7 +8,7 @@
|
|
| 8 |
},
|
| 9 |
"scripts": {
|
| 10 |
"pyright": "pyright",
|
| 11 |
-
"flake8": "flake8
|
| 12 |
"test": "echo \"Error: no test specified\" && exit 1"
|
| 13 |
},
|
| 14 |
"repository": {
|
|
|
|
| 8 |
},
|
| 9 |
"scripts": {
|
| 10 |
"pyright": "pyright",
|
| 11 |
+
"flake8": "flake8",
|
| 12 |
"test": "echo \"Error: no test specified\" && exit 1"
|
| 13 |
},
|
| 14 |
"repository": {
|
radiobee/__main__.py
CHANGED
|
@@ -10,7 +10,7 @@ from textwrap import dedent
|
|
| 10 |
from itertools import zip_longest
|
| 11 |
from socket import socket, AF_INET, SOCK_STREAM
|
| 12 |
|
| 13 |
-
from sklearn.cluster import DBSCAN
|
| 14 |
import joblib
|
| 15 |
from varname import nameof
|
| 16 |
from logzero import logger
|
|
@@ -18,7 +18,8 @@ from logzero import logger
|
|
| 18 |
# import numpy as np
|
| 19 |
import pandas as pd
|
| 20 |
import seaborn as sns
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
# from tabulate import tabulate
|
| 24 |
from fastlid import fastlid
|
|
@@ -34,9 +35,12 @@ from radiobee.gen_pset import gen_pset
|
|
| 34 |
from radiobee.gen_aset import gen_aset
|
| 35 |
from radiobee.align_texts import align_texts
|
| 36 |
|
| 37 |
-
# from radiobee.plot_df import plot_df
|
| 38 |
from radiobee.cmat2tset import cmat2tset
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
sns.set()
|
| 41 |
sns.set_style("darkgrid")
|
| 42 |
fastlid.set_languages = ["en", "zh"]
|
|
@@ -91,8 +95,12 @@ if __name__ == "__main__":
|
|
| 91 |
]
|
| 92 |
outputs = ["dataframe"]
|
| 93 |
# """
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
logger.debug(" debug ")
|
| 97 |
logger.info(" info ")
|
| 98 |
|
|
@@ -119,9 +127,15 @@ if __name__ == "__main__":
|
|
| 119 |
x min_df: int | float = 1
|
| 120 |
x max_df: int | float = 1.0
|
| 121 |
# """
|
| 122 |
-
input_tf_type = gr.inputs.Dropdown(
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
input_norm_type = gr.inputs.Radio(["None", "l1", "l2"], default="None") # ditto
|
| 126 |
|
| 127 |
inputs = [
|
|
@@ -147,12 +161,76 @@ if __name__ == "__main__":
|
|
| 147 |
|
| 148 |
# modi
|
| 149 |
examples = [
|
| 150 |
-
[
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
]
|
| 157 |
outputs = ["dataframe", "plot"]
|
| 158 |
outputs = ["plot"]
|
|
@@ -227,8 +305,8 @@ if __name__ == "__main__":
|
|
| 227 |
|
| 228 |
lst1 = [elm for elm in df1.text1 if elm]
|
| 229 |
lst2 = [elm for elm in df1.text2 if elm]
|
| 230 |
-
len1 = len(lst1)
|
| 231 |
-
len2 = len(lst2)
|
| 232 |
|
| 233 |
cmat = lists2cmat(
|
| 234 |
lst1,
|
|
@@ -242,66 +320,8 @@ if __name__ == "__main__":
|
|
| 242 |
tset = pd.DataFrame(cmat2tset(cmat))
|
| 243 |
tset.columns = ["x", "y", "cos"]
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
xlabel: str = lang1
|
| 248 |
-
ylabel: str = lang2
|
| 249 |
-
|
| 250 |
-
sns.set()
|
| 251 |
-
sns.set_style("darkgrid")
|
| 252 |
-
|
| 253 |
-
# close all existing figures, necesssary for hf spaces
|
| 254 |
-
plt.close("all")
|
| 255 |
-
# if sys.platform not in ["win32", "linux"]:
|
| 256 |
-
plt.switch_backend('Agg') # to cater for Mac, thanks to WhiteFox
|
| 257 |
-
|
| 258 |
-
fig = plt.figure()
|
| 259 |
-
gs = fig.add_gridspec(2, 2, wspace=0.4, hspace=0.58)
|
| 260 |
-
ax2 = fig.add_subplot(gs[0, 0])
|
| 261 |
-
ax0 = fig.add_subplot(gs[0, 1])
|
| 262 |
-
ax1 = fig.add_subplot(gs[1, 0])
|
| 263 |
-
|
| 264 |
-
cmap = "viridis_r"
|
| 265 |
-
sns.heatmap(cmat, cmap=cmap, ax=ax2).invert_yaxis()
|
| 266 |
-
ax2.set_xlabel(xlabel)
|
| 267 |
-
ax2.set_ylabel(ylabel)
|
| 268 |
-
ax2.set_title("cos similarity heatmap")
|
| 269 |
-
|
| 270 |
-
fig.suptitle("alignment projection")
|
| 271 |
-
|
| 272 |
-
_ = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ > -1
|
| 273 |
-
# _x = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ < 0
|
| 274 |
-
_x = ~_
|
| 275 |
-
|
| 276 |
-
df_.plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax0)
|
| 277 |
-
|
| 278 |
-
# clustered
|
| 279 |
-
df_[_].plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax1)
|
| 280 |
-
|
| 281 |
-
# outliers
|
| 282 |
-
df_[_x].plot.scatter("x", "y", c="r", marker="x", alpha=0.6, ax=ax0)
|
| 283 |
-
|
| 284 |
-
# ax0.set_xlabel("")
|
| 285 |
-
# ax0.set_ylabel("zh")
|
| 286 |
-
ax0.set_xlabel(xlabel)
|
| 287 |
-
ax0.set_ylabel(ylabel)
|
| 288 |
-
|
| 289 |
-
ax0.set_xlim(0, len1)
|
| 290 |
-
ax0.set_ylim(0, len2)
|
| 291 |
-
ax0.set_title("max along columns ('x': outliers)")
|
| 292 |
-
|
| 293 |
-
# ax1.set_xlabel("en")
|
| 294 |
-
# ax1.set_ylabel("zh")
|
| 295 |
-
ax1.set_xlabel(xlabel)
|
| 296 |
-
ax1.set_ylabel(ylabel)
|
| 297 |
-
|
| 298 |
-
ax1.set_xlim(0, len1)
|
| 299 |
-
ax1.set_ylim(0, len2)
|
| 300 |
-
ax1.set_title(f"potential aligned pairs ({round(sum(_) / len1, 2):.0%})")
|
| 301 |
-
|
| 302 |
-
# return df, plot_df(pd.DataFrame(cmat))
|
| 303 |
-
# tset.plot.scatter("x", "y", c="cos", cmap="viridis_r")
|
| 304 |
-
|
| 305 |
df_trimmed = pd.concat(
|
| 306 |
[
|
| 307 |
df1.iloc[:4, :],
|
|
@@ -318,12 +338,13 @@ if __name__ == "__main__":
|
|
| 318 |
],
|
| 319 |
ignore_index=1,
|
| 320 |
)
|
|
|
|
| 321 |
|
| 322 |
# process lst1, lst2 to obtained df_aligned
|
| 323 |
# quick fix ValueError: not enough values to unpack (expected at least 1, got 0)
|
| 324 |
# fixed in gen_pet, but we leave the loop here
|
| 325 |
for min_s in range(min_samples):
|
| 326 |
-
logger.info(" min_samples,
|
| 327 |
try:
|
| 328 |
pset = gen_pset(
|
| 329 |
cmat,
|
|
@@ -342,6 +363,89 @@ if __name__ == "__main__":
|
|
| 342 |
# break should happen above when min_samples = 2
|
| 343 |
raise Exception("bummer, this shouldn't happen, probably another bug")
|
| 344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
src_len, tgt_len = cmat.shape
|
| 346 |
aset = gen_aset(pset, src_len, tgt_len)
|
| 347 |
final_list = align_texts(aset, lst2, lst1) # note the order
|
|
@@ -359,7 +463,9 @@ if __name__ == "__main__":
|
|
| 359 |
|
| 360 |
# file_dl.write_text(_, encoding="gb2312") # no go
|
| 361 |
|
| 362 |
-
file_dl_xlsx = Path(
|
|
|
|
|
|
|
| 363 |
df_aligned.to_excel(file_dl_xlsx)
|
| 364 |
|
| 365 |
# return df_trimmed, plt
|
|
@@ -395,10 +501,13 @@ if __name__ == "__main__":
|
|
| 395 |
* `Flag`: Should something go wrong, you can click Flag to save the output and inform the developer.
|
| 396 |
"""
|
| 397 |
)
|
| 398 |
-
|
| 399 |
-
css = ".output_image, .input_image {height: 20rem !important; width: 100% !important;}"
|
| 400 |
-
|
| 401 |
-
".input_file,
|
|
|
|
|
|
|
|
|
|
| 402 |
)
|
| 403 |
|
| 404 |
logger.info("running at port %s", server_port)
|
|
@@ -424,15 +533,21 @@ if __name__ == "__main__":
|
|
| 424 |
# height=150, # 500
|
| 425 |
width=900, # 900
|
| 426 |
allow_flagging=True,
|
| 427 |
-
flagging_options=[
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
)
|
| 430 |
|
| 431 |
iface.launch(
|
| 432 |
-
|
| 433 |
-
share=True,
|
| 434 |
-
debug=
|
| 435 |
-
server_name="0.0.0.0",
|
|
|
|
| 436 |
server_port=server_port,
|
| 437 |
# show_tips=True,
|
| 438 |
enable_queue=True,
|
|
|
|
| 10 |
from itertools import zip_longest
|
| 11 |
from socket import socket, AF_INET, SOCK_STREAM
|
| 12 |
|
| 13 |
+
from sklearn.cluster import DBSCAN # noqa
|
| 14 |
import joblib
|
| 15 |
from varname import nameof
|
| 16 |
from logzero import logger
|
|
|
|
| 18 |
# import numpy as np
|
| 19 |
import pandas as pd
|
| 20 |
import seaborn as sns
|
| 21 |
+
|
| 22 |
+
import matplotlib.pyplot as plt # noqa
|
| 23 |
|
| 24 |
# from tabulate import tabulate
|
| 25 |
from fastlid import fastlid
|
|
|
|
| 35 |
from radiobee.gen_aset import gen_aset
|
| 36 |
from radiobee.align_texts import align_texts
|
| 37 |
|
|
|
|
| 38 |
from radiobee.cmat2tset import cmat2tset
|
| 39 |
|
| 40 |
+
# from radiobee.plot_df import plot_df
|
| 41 |
+
# from radiobee.plot_cmat import plot_cmat
|
| 42 |
+
from radiobee.trim_df import trim_df
|
| 43 |
+
|
| 44 |
sns.set()
|
| 45 |
sns.set_style("darkgrid")
|
| 46 |
fastlid.set_languages = ["en", "zh"]
|
|
|
|
| 95 |
]
|
| 96 |
outputs = ["dataframe"]
|
| 97 |
# """
|
| 98 |
+
import logzero
|
| 99 |
+
|
| 100 |
+
# debug = True
|
| 101 |
+
debug = False
|
| 102 |
+
if debug:
|
| 103 |
+
logzero.loglevel(10)
|
| 104 |
logger.debug(" debug ")
|
| 105 |
logger.info(" info ")
|
| 106 |
|
|
|
|
| 127 |
x min_df: int | float = 1
|
| 128 |
x max_df: int | float = 1.0
|
| 129 |
# """
|
| 130 |
+
input_tf_type = gr.inputs.Dropdown(
|
| 131 |
+
["linear", "sqrt", "log", "binary"], default="linear"
|
| 132 |
+
)
|
| 133 |
+
input_idf_type = gr.inputs.Radio(
|
| 134 |
+
["None", "standard", "smooth", "bm25"], default="None"
|
| 135 |
+
) # need to convert "None" this to None in fn
|
| 136 |
+
input_dl_type = gr.inputs.Radio(
|
| 137 |
+
["None", "linear", "sqrt", "log"], default="None"
|
| 138 |
+
) # ditto
|
| 139 |
input_norm_type = gr.inputs.Radio(["None", "l1", "l2"], default="None") # ditto
|
| 140 |
|
| 141 |
inputs = [
|
|
|
|
| 161 |
|
| 162 |
# modi
|
| 163 |
examples = [
|
| 164 |
+
[
|
| 165 |
+
"data/test_zh.txt",
|
| 166 |
+
"data/test_en.txt",
|
| 167 |
+
"linear",
|
| 168 |
+
"None",
|
| 169 |
+
"None",
|
| 170 |
+
"None",
|
| 171 |
+
10,
|
| 172 |
+
6,
|
| 173 |
+
],
|
| 174 |
+
[
|
| 175 |
+
"data/test_en.txt",
|
| 176 |
+
"data/test_zh.txt",
|
| 177 |
+
"linear",
|
| 178 |
+
"None",
|
| 179 |
+
"None",
|
| 180 |
+
"None",
|
| 181 |
+
10,
|
| 182 |
+
6,
|
| 183 |
+
],
|
| 184 |
+
[
|
| 185 |
+
"data/shakespeare_zh500.txt",
|
| 186 |
+
"data/shakespeare_en500.txt",
|
| 187 |
+
"linear",
|
| 188 |
+
"None",
|
| 189 |
+
"None",
|
| 190 |
+
"None",
|
| 191 |
+
10,
|
| 192 |
+
6,
|
| 193 |
+
],
|
| 194 |
+
[
|
| 195 |
+
"data/shakespeare_en500.txt",
|
| 196 |
+
"data/shakespeare_zh500.txt",
|
| 197 |
+
"linear",
|
| 198 |
+
"None",
|
| 199 |
+
"None",
|
| 200 |
+
"None",
|
| 201 |
+
10,
|
| 202 |
+
6,
|
| 203 |
+
],
|
| 204 |
+
[
|
| 205 |
+
"data/hlm-ch1-zh.txt",
|
| 206 |
+
"data/hlm-ch1-en.txt",
|
| 207 |
+
"linear",
|
| 208 |
+
"None",
|
| 209 |
+
"None",
|
| 210 |
+
"None",
|
| 211 |
+
10,
|
| 212 |
+
6,
|
| 213 |
+
],
|
| 214 |
+
[
|
| 215 |
+
"data/hlm-ch1-en.txt",
|
| 216 |
+
"data/hlm-ch1-zh.txt",
|
| 217 |
+
"linear",
|
| 218 |
+
"None",
|
| 219 |
+
"None",
|
| 220 |
+
"None",
|
| 221 |
+
10,
|
| 222 |
+
6,
|
| 223 |
+
],
|
| 224 |
+
[
|
| 225 |
+
"data/ps-cn.txt",
|
| 226 |
+
"data/ps-en.txt",
|
| 227 |
+
"linear",
|
| 228 |
+
"None",
|
| 229 |
+
"None",
|
| 230 |
+
"None",
|
| 231 |
+
10,
|
| 232 |
+
4,
|
| 233 |
+
],
|
| 234 |
]
|
| 235 |
outputs = ["dataframe", "plot"]
|
| 236 |
outputs = ["plot"]
|
|
|
|
| 305 |
|
| 306 |
lst1 = [elm for elm in df1.text1 if elm]
|
| 307 |
lst2 = [elm for elm in df1.text2 if elm]
|
| 308 |
+
# len1 = len(lst1) # noqa
|
| 309 |
+
# len2 = len(lst2) # noqa
|
| 310 |
|
| 311 |
cmat = lists2cmat(
|
| 312 |
lst1,
|
|
|
|
| 320 |
tset = pd.DataFrame(cmat2tset(cmat))
|
| 321 |
tset.columns = ["x", "y", "cos"]
|
| 322 |
|
| 323 |
+
df_trimmed = trim_df(df1)
|
| 324 |
+
_ = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
df_trimmed = pd.concat(
|
| 326 |
[
|
| 327 |
df1.iloc[:4, :],
|
|
|
|
| 338 |
],
|
| 339 |
ignore_index=1,
|
| 340 |
)
|
| 341 |
+
# """
|
| 342 |
|
| 343 |
# process lst1, lst2 to obtained df_aligned
|
| 344 |
# quick fix ValueError: not enough values to unpack (expected at least 1, got 0)
|
| 345 |
# fixed in gen_pet, but we leave the loop here
|
| 346 |
for min_s in range(min_samples):
|
| 347 |
+
logger.info(" min_samples, using %s", min_samples - min_s)
|
| 348 |
try:
|
| 349 |
pset = gen_pset(
|
| 350 |
cmat,
|
|
|
|
| 363 |
# break should happen above when min_samples = 2
|
| 364 |
raise Exception("bummer, this shouldn't happen, probably another bug")
|
| 365 |
|
| 366 |
+
min_samples = gen_pset.min_samples
|
| 367 |
+
|
| 368 |
+
# will result in error message:
|
| 369 |
+
# UserWarning: Starting a Matplotlib GUI outside of
|
| 370 |
+
# the main thread will likely fail."
|
| 371 |
+
_ = """
|
| 372 |
+
plot_cmat(
|
| 373 |
+
cmat,
|
| 374 |
+
eps=eps,
|
| 375 |
+
min_samples=min_samples,
|
| 376 |
+
xlabel=lang1,
|
| 377 |
+
ylabel=lang2,
|
| 378 |
+
)
|
| 379 |
+
# """
|
| 380 |
+
|
| 381 |
+
# move plot_cmat's code to the main thread here
|
| 382 |
+
# to make it work
|
| 383 |
+
xlabel = lang1
|
| 384 |
+
ylabel = lang2
|
| 385 |
+
|
| 386 |
+
len1, len2 = cmat.shape
|
| 387 |
+
ylim, xlim = len1, len2
|
| 388 |
+
|
| 389 |
+
# does not seem to show up
|
| 390 |
+
logger.debug(" len1 (ylim): %s, len2 (xlim): %s", len1, len2)
|
| 391 |
+
if debug:
|
| 392 |
+
print(f" len1 (ylim): {len1}, len2 (xlim): {len2}")
|
| 393 |
+
|
| 394 |
+
df_ = pd.DataFrame(cmat2tset(cmat))
|
| 395 |
+
df_.columns = ["x", "y", "cos"]
|
| 396 |
+
|
| 397 |
+
sns.set()
|
| 398 |
+
sns.set_style("darkgrid")
|
| 399 |
+
|
| 400 |
+
# close all existing figures, necesssary for hf spaces
|
| 401 |
+
plt.close("all")
|
| 402 |
+
# if sys.platform not in ["win32", "linux"]:
|
| 403 |
+
plt.switch_backend('Agg') # to cater for Mac, thanks to WhiteFox
|
| 404 |
+
|
| 405 |
+
# figsize=(13, 8), (339, 212) mm on '1280x800+0+0'
|
| 406 |
+
fig = plt.figure(figsize=(13, 8))
|
| 407 |
+
|
| 408 |
+
# gs = fig.add_gridspec(2, 2, wspace=0.4, hspace=0.58)
|
| 409 |
+
gs = fig.add_gridspec(1, 2, wspace=0.4, hspace=0.58)
|
| 410 |
+
ax_heatmap = fig.add_subplot(gs[0, 0]) # ax2
|
| 411 |
+
ax0 = fig.add_subplot(gs[0, 1])
|
| 412 |
+
# ax1 = fig.add_subplot(gs[1, 0])
|
| 413 |
+
|
| 414 |
+
cmap = "viridis_r"
|
| 415 |
+
sns.heatmap(cmat, cmap=cmap, ax=ax_heatmap).invert_yaxis()
|
| 416 |
+
ax_heatmap.set_xlabel(xlabel)
|
| 417 |
+
ax_heatmap.set_ylabel(ylabel)
|
| 418 |
+
ax_heatmap.set_title("cos similarity heatmap")
|
| 419 |
+
|
| 420 |
+
fig.suptitle(f"alignment projection\n(eps={eps}, min_samples={min_samples})")
|
| 421 |
+
|
| 422 |
+
_ = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ > -1
|
| 423 |
+
# _x = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ < 0
|
| 424 |
+
_x = ~_
|
| 425 |
+
|
| 426 |
+
# max cos along columns
|
| 427 |
+
df_.plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax0)
|
| 428 |
+
|
| 429 |
+
# outliers
|
| 430 |
+
df_[_x].plot.scatter("x", "y", c="r", marker="x", alpha=0.6, ax=ax0)
|
| 431 |
+
ax0.set_xlabel(xlabel)
|
| 432 |
+
ax0.set_ylabel(ylabel)
|
| 433 |
+
ax0.set_xlim(xmin=0, xmax=xlim)
|
| 434 |
+
ax0.set_ylim(ymin=0, ymax=ylim)
|
| 435 |
+
ax0.set_title(
|
| 436 |
+
"max along columns ('x': outliers)\n"
|
| 437 |
+
"potential aligned pairs (green line)\n"
|
| 438 |
+
f"({round(sum(_) / xlim, 2):.0%})"
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
# clustered
|
| 442 |
+
# df_[_].plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax1)
|
| 443 |
+
# ax1.set_xlabel(xlabel)
|
| 444 |
+
# ax1.set_ylabel(ylabel)
|
| 445 |
+
# ax1.set_xlim(0, len1)
|
| 446 |
+
# ax1.set_title(f"potential aligned pairs ({round(sum(_) / len1, 2):.0%})")
|
| 447 |
+
# end of plot_cmat
|
| 448 |
+
|
| 449 |
src_len, tgt_len = cmat.shape
|
| 450 |
aset = gen_aset(pset, src_len, tgt_len)
|
| 451 |
final_list = align_texts(aset, lst2, lst1) # note the order
|
|
|
|
| 463 |
|
| 464 |
# file_dl.write_text(_, encoding="gb2312") # no go
|
| 465 |
|
| 466 |
+
file_dl_xlsx = Path(
|
| 467 |
+
f"{Path(file1.name).stem[:-8]}-{Path(file2.name).stem[:-8]}.xlsx"
|
| 468 |
+
)
|
| 469 |
df_aligned.to_excel(file_dl_xlsx)
|
| 470 |
|
| 471 |
# return df_trimmed, plt
|
|
|
|
| 501 |
* `Flag`: Should something go wrong, you can click Flag to save the output and inform the developer.
|
| 502 |
"""
|
| 503 |
)
|
| 504 |
+
css_image = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
| 505 |
+
# css = ".output_image, .input_image {height: 20rem !important; width: 100% !important;}"
|
| 506 |
+
css_input_file = (
|
| 507 |
+
".input_file, {height: 9rem !important; width: 100% !important;}"
|
| 508 |
+
)
|
| 509 |
+
css_output_file = (
|
| 510 |
+
".output_file , {height: 4rem !important; width: 100% !important;}"
|
| 511 |
)
|
| 512 |
|
| 513 |
logger.info("running at port %s", server_port)
|
|
|
|
| 533 |
# height=150, # 500
|
| 534 |
width=900, # 900
|
| 535 |
allow_flagging=True,
|
| 536 |
+
flagging_options=[
|
| 537 |
+
"fatal",
|
| 538 |
+
"bug",
|
| 539 |
+
"brainstorm",
|
| 540 |
+
"excelsior",
|
| 541 |
+
], # "paragon"],
|
| 542 |
+
css=f"{css_image} {css_input_file} {css_output_file}",
|
| 543 |
)
|
| 544 |
|
| 545 |
iface.launch(
|
| 546 |
+
share=False,
|
| 547 |
+
# share=True,
|
| 548 |
+
debug=debug,
|
| 549 |
+
# server_name="0.0.0.0",
|
| 550 |
+
server_name="127.0.0.1",
|
| 551 |
server_port=server_port,
|
| 552 |
# show_tips=True,
|
| 553 |
enable_queue=True,
|
radiobee/gen_pset.py
CHANGED
|
@@ -152,6 +152,7 @@ def gen_pset(
|
|
| 152 |
|
| 153 |
Refer to _gen_pset.
|
| 154 |
"""
|
|
|
|
| 155 |
for min_s in range(min_samples):
|
| 156 |
logger.debug(" min_samples, try %s", min_samples - min_s)
|
| 157 |
try:
|
|
@@ -171,4 +172,8 @@ def gen_pset(
|
|
| 171 |
else:
|
| 172 |
# break should happen above when min_samples = 2
|
| 173 |
raise Exception("bummer, this shouldn't happen, probably another bug")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
return pset
|
|
|
|
| 152 |
|
| 153 |
Refer to _gen_pset.
|
| 154 |
"""
|
| 155 |
+
gen_pset.min_samples = min_samples
|
| 156 |
for min_s in range(min_samples):
|
| 157 |
logger.debug(" min_samples, try %s", min_samples - min_s)
|
| 158 |
try:
|
|
|
|
| 172 |
else:
|
| 173 |
# break should happen above when min_samples = 2
|
| 174 |
raise Exception("bummer, this shouldn't happen, probably another bug")
|
| 175 |
+
|
| 176 |
+
# store new min_samples
|
| 177 |
+
gen_pset.min_samples = min_samples - min_s
|
| 178 |
+
|
| 179 |
return pset
|
radiobee/plot_cmat.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Plot pandas.DataFrame with DBSCAN clustering."""
|
| 2 |
+
# pylint: disable=invalid-name, too-many-arguments
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
from sklearn.cluster import DBSCAN
|
| 9 |
+
|
| 10 |
+
from fastlid import fastlid
|
| 11 |
+
import logzero
|
| 12 |
+
from logzero import logger
|
| 13 |
+
|
| 14 |
+
from radiobee.cmat2tset import cmat2tset
|
| 15 |
+
|
| 16 |
+
# turn interactive when in ipython session
|
| 17 |
+
_ = """
|
| 18 |
+
if "get_ipython" in globals():
|
| 19 |
+
plt.ion()
|
| 20 |
+
else:
|
| 21 |
+
plt.switch_backend("Agg")
|
| 22 |
+
# """
|
| 23 |
+
|
| 24 |
+
logzero.loglevel(20) # 10: debug on
|
| 25 |
+
fastlid.set_languages = ["en", "zh"]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# fmt: off
|
| 29 |
+
def plot_cmat(
|
| 30 |
+
# df_: pd.DataFrame,
|
| 31 |
+
cmat: np.ndarray,
|
| 32 |
+
eps: float = 10,
|
| 33 |
+
min_samples: int = 6,
|
| 34 |
+
# ylim: int = None,
|
| 35 |
+
xlabel: str = "zh",
|
| 36 |
+
ylabel: str = "en",
|
| 37 |
+
backend: str = "Agg",
|
| 38 |
+
showfig: bool = False,
|
| 39 |
+
):
|
| 40 |
+
# ) -> plt:
|
| 41 |
+
# fmt: on
|
| 42 |
+
"""Plot df with DBSCAN clustering.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
df_: pandas.DataFrame, with three columns columns=["x", "y", "cos"]
|
| 46 |
+
Returns:
|
| 47 |
+
matplotlib.pyplot: for possible use in gradio
|
| 48 |
+
|
| 49 |
+
plot_df(pd.DataFrame(cmat2tset(smat), columns=['x', 'y', 'cos']))
|
| 50 |
+
df_ = pd.DataFrame(cmat2tset(smat), columns=['x', 'y', 'cos'])
|
| 51 |
+
|
| 52 |
+
# sort 'x', axis 0 changes, index regenerated
|
| 53 |
+
df_s = df_.sort_values('x', axis=0, ignore_index=True)
|
| 54 |
+
|
| 55 |
+
# sorintg does not seem to impact clustering
|
| 56 |
+
DBSCAN(1.5, min_samples=3).fit(df_).labels_
|
| 57 |
+
DBSCAN(1.5, min_samples=3).fit(df_s).labels_
|
| 58 |
+
|
| 59 |
+
"""
|
| 60 |
+
logger.debug(
|
| 61 |
+
'"get_ipython" in globals(): %s', "get_ipython" in globals()
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
len1, len2 = cmat.shape
|
| 65 |
+
|
| 66 |
+
df_ = pd.DataFrame(cmat2tset(cmat))
|
| 67 |
+
df_.columns = ["x", "y", "cos"]
|
| 68 |
+
|
| 69 |
+
backend_saved = matplotlib.get_backend()
|
| 70 |
+
|
| 71 |
+
# switch backend if necessary
|
| 72 |
+
if backend_saved != backend:
|
| 73 |
+
plt.switch_backend(backend)
|
| 74 |
+
|
| 75 |
+
# len1 = len(lst1) # noqa
|
| 76 |
+
# len2 = len(lst2) # noqa
|
| 77 |
+
|
| 78 |
+
# lang1, _ = fastlid(" ".join(lst1))
|
| 79 |
+
# lang2, _ = fastlid(" ".join(lst2))
|
| 80 |
+
# xlabel: str = lang1
|
| 81 |
+
# ylabel: str = lang2
|
| 82 |
+
|
| 83 |
+
sns.set()
|
| 84 |
+
sns.set_style("darkgrid")
|
| 85 |
+
|
| 86 |
+
# close all existing figures, necesssary for hf spaces
|
| 87 |
+
plt.close("all")
|
| 88 |
+
# if sys.platform not in ["win32", "linux"]:
|
| 89 |
+
# plt.switch_backend('Agg') # to cater for Mac, thanks to WhiteFox
|
| 90 |
+
|
| 91 |
+
fig = plt.figure()
|
| 92 |
+
gs = fig.add_gridspec(2, 2, wspace=0.4, hspace=0.58)
|
| 93 |
+
ax2 = fig.add_subplot(gs[0, 0])
|
| 94 |
+
ax0 = fig.add_subplot(gs[0, 1])
|
| 95 |
+
ax1 = fig.add_subplot(gs[1, 0])
|
| 96 |
+
|
| 97 |
+
cmap = "viridis_r"
|
| 98 |
+
sns.heatmap(cmat, cmap=cmap, ax=ax2).invert_yaxis()
|
| 99 |
+
ax2.set_xlabel(xlabel)
|
| 100 |
+
ax2.set_ylabel(ylabel)
|
| 101 |
+
ax2.set_title("cos similarity heatmap")
|
| 102 |
+
|
| 103 |
+
fig.suptitle("alignment projection")
|
| 104 |
+
|
| 105 |
+
_ = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ > -1
|
| 106 |
+
# _x = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ < 0
|
| 107 |
+
_x = ~_
|
| 108 |
+
|
| 109 |
+
df_.plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax0)
|
| 110 |
+
|
| 111 |
+
# clustered
|
| 112 |
+
df_[_].plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax1)
|
| 113 |
+
|
| 114 |
+
# outliers
|
| 115 |
+
df_[_x].plot.scatter("x", "y", c="r", marker="x", alpha=0.6, ax=ax0)
|
| 116 |
+
|
| 117 |
+
ax0.set_xlabel(xlabel)
|
| 118 |
+
ax0.set_ylabel(ylabel)
|
| 119 |
+
|
| 120 |
+
ax0.set_xlim(0, len1)
|
| 121 |
+
ax0.set_ylim(0, len2)
|
| 122 |
+
ax0.set_title("max along columns ('x': outliers)")
|
| 123 |
+
|
| 124 |
+
# ax1.set_xlabel("en")
|
| 125 |
+
# ax1.set_ylabel("zh")
|
| 126 |
+
ax1.set_xlabel(xlabel)
|
| 127 |
+
ax1.set_ylabel(ylabel)
|
| 128 |
+
|
| 129 |
+
ax1.set_xlim(0, len1)
|
| 130 |
+
ax1.set_ylim(0, len2)
|
| 131 |
+
ax1.set_title(f"potential aligned pairs ({round(sum(_) / len1, 2):.0%})")
|
| 132 |
+
|
| 133 |
+
logger.debug(" matplotlib.get_backend(): %s", matplotlib.get_backend())
|
| 134 |
+
|
| 135 |
+
# if matplotlib.get_backend() not in ["Agg"]:
|
| 136 |
+
if showfig:
|
| 137 |
+
# plt.ioff() # or we'll just see the plot show and disappear
|
| 138 |
+
# plt.show()
|
| 139 |
+
plt.show(block=True)
|
| 140 |
+
|
| 141 |
+
# restore if necessary
|
| 142 |
+
if backend_saved != backend:
|
| 143 |
+
plt.switch_backend(backend_saved)
|
| 144 |
+
|
| 145 |
+
# return plt
|
radiobee/plot_df.py
CHANGED
|
@@ -1,26 +1,37 @@
|
|
| 1 |
"""Plot pandas.DataFrame with DBSCAN clustering."""
|
| 2 |
# pylint: disable=invalid-name, too-many-arguments
|
| 3 |
-
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import seaborn as sns
|
| 7 |
from sklearn.cluster import DBSCAN
|
| 8 |
|
| 9 |
-
from logzero import logger
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# turn interactive when in ipython session
|
|
|
|
| 12 |
if "get_ipython" in globals():
|
| 13 |
plt.ion()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
# fmt: off
|
| 17 |
def plot_df(
|
| 18 |
df_: pd.DataFrame,
|
| 19 |
-
|
| 20 |
eps: float = 10,
|
| 21 |
-
|
| 22 |
-
xlabel: str = "
|
| 23 |
-
ylabel: str = "
|
|
|
|
|
|
|
|
|
|
| 24 |
) -> plt:
|
| 25 |
# fmt: on
|
| 26 |
"""Plot df with DBSCAN clustering.
|
|
@@ -41,60 +52,76 @@ def plot_df(
|
|
| 41 |
DBSCAN(1.5, min_samples=3).fit(df_s).labels_
|
| 42 |
|
| 43 |
"""
|
| 44 |
-
df_ = pd.DataFrame(
|
| 45 |
-
if df_.
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
sns.set()
|
| 60 |
sns.set_style("darkgrid")
|
| 61 |
-
# fig, (ax0, ax1) = plt.subplots(2, figsize=(11.69, 8.27))
|
| 62 |
-
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(11.69, 8.27))
|
| 63 |
|
| 64 |
-
fig.
|
| 65 |
-
_ = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ > -1
|
| 66 |
-
_x = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ < 0
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
#
|
| 70 |
-
#
|
|
|
|
| 71 |
|
| 72 |
-
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
| 77 |
# outliers
|
| 78 |
df_[_x].plot.scatter("x", "y", c="r", marker="x", alpha=0.6, ax=ax0)
|
| 79 |
|
| 80 |
-
# ax0.set_xlabel("")
|
| 81 |
-
# ax0.set_ylabel("zh")
|
| 82 |
-
ax0.set_xlabel("")
|
| 83 |
-
ax0.set_ylabel(ylabel)
|
| 84 |
-
xlim = len(df_)
|
| 85 |
-
ax0.set_xlim(0, xlim)
|
| 86 |
-
if ylim:
|
| 87 |
-
ax0.set_ylim(0, ylim)
|
| 88 |
-
ax0.set_title("max similarity along columns (outliers denoted by 'x')")
|
| 89 |
-
|
| 90 |
# ax1.set_xlabel("en")
|
| 91 |
# ax1.set_ylabel("zh")
|
| 92 |
-
|
| 93 |
-
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
return plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""Plot pandas.DataFrame with DBSCAN clustering."""
|
| 2 |
# pylint: disable=invalid-name, too-many-arguments
|
| 3 |
+
import numpy as np # noqa
|
| 4 |
import pandas as pd
|
| 5 |
+
import matplotlib
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import seaborn as sns
|
| 8 |
from sklearn.cluster import DBSCAN
|
| 9 |
|
| 10 |
+
from logzero import logger # noqa
|
| 11 |
+
|
| 12 |
+
# from radiobee.cmat2tset import cmat2tset
|
| 13 |
|
| 14 |
# turn interactive when in ipython session
|
| 15 |
+
_ = """
|
| 16 |
if "get_ipython" in globals():
|
| 17 |
plt.ion()
|
| 18 |
+
else:
|
| 19 |
+
plt.switch_backend('Agg')
|
| 20 |
+
# """
|
| 21 |
+
# fastlid.set_languages = ["en", "zh"]
|
| 22 |
|
| 23 |
|
| 24 |
# fmt: off
|
| 25 |
def plot_df(
|
| 26 |
df_: pd.DataFrame,
|
| 27 |
+
# cmat: np.ndarray,
|
| 28 |
eps: float = 10,
|
| 29 |
+
min_samples: int = 6,
|
| 30 |
+
xlabel: str = "",
|
| 31 |
+
ylabel: str = "",
|
| 32 |
+
xlim: int = 0,
|
| 33 |
+
ylim: int = 0,
|
| 34 |
+
backend: str = "TkAgg",
|
| 35 |
) -> plt:
|
| 36 |
# fmt: on
|
| 37 |
"""Plot df with DBSCAN clustering.
|
|
|
|
| 52 |
DBSCAN(1.5, min_samples=3).fit(df_s).labels_
|
| 53 |
|
| 54 |
"""
|
| 55 |
+
# df_ = pd.DataFrame(cmat2tset(cmat))
|
| 56 |
+
if df_.shape[1] == 3:
|
| 57 |
+
df_.columns = ["x", "y", "cos"]
|
| 58 |
+
else:
|
| 59 |
+
logger.error(" shape mismatch: %s, expected (x, 3)", df_.shape)
|
| 60 |
+
# return None
|
| 61 |
+
raise Exception(" df_.shape[1] not equal to 3 ")
|
| 62 |
+
|
| 63 |
+
if not xlim:
|
| 64 |
+
xlim = len(df_)
|
| 65 |
+
if not ylim:
|
| 66 |
+
ylim = df_.y.max()
|
| 67 |
+
|
| 68 |
+
if not xlabel:
|
| 69 |
+
xlabel = str(xlim)
|
| 70 |
+
if not ylabel:
|
| 71 |
+
ylabel = str(ylim)
|
| 72 |
+
|
| 73 |
+
backend_saved = matplotlib.get_backend()
|
| 74 |
+
|
| 75 |
+
# switch if necessary
|
| 76 |
+
if backend_saved != backend:
|
| 77 |
+
plt.switch_backend(backend)
|
| 78 |
|
| 79 |
sns.set()
|
| 80 |
sns.set_style("darkgrid")
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
fig = plt.figure(figsize=(13, 8))
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
# gs = fig.add_gridspec(2, 2, wspace=0.4, hspace=0.58)
|
| 85 |
+
# ax2 = fig.add_subplot(gs[0, 0])
|
| 86 |
+
# ax0 = fig.add_subplot(gs[0, 1])
|
| 87 |
+
# ax1 = fig.add_subplot(gs[1, 0])
|
| 88 |
|
| 89 |
+
gs = fig.add_gridspec(1, 1, wspace=0.4, hspace=0.58)
|
| 90 |
+
ax0 = fig.add_subplot(gs[0, 0])
|
| 91 |
|
| 92 |
+
cmap = "viridis_r"
|
| 93 |
+
|
| 94 |
+
_ = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ > -1
|
| 95 |
+
_x = ~_
|
| 96 |
|
| 97 |
+
# clustered
|
| 98 |
+
df_[_].plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax0)
|
| 99 |
# outliers
|
| 100 |
df_[_x].plot.scatter("x", "y", c="r", marker="x", alpha=0.6, ax=ax0)
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
# ax1.set_xlabel("en")
|
| 103 |
# ax1.set_ylabel("zh")
|
| 104 |
+
ax0.set_xlabel(xlabel)
|
| 105 |
+
ax0.set_ylabel(ylabel)
|
| 106 |
|
| 107 |
+
# ax0.set_xlim(0, xlim)
|
| 108 |
+
# ax0.set_ylim(0, ylim)
|
| 109 |
+
ax0.set_title("max cos ('x': outliers)")
|
| 110 |
+
|
| 111 |
+
# ax1.set_title(f"potential aligned pairs ({round(sum(_) / xlim, 2):.0%})")
|
| 112 |
+
|
| 113 |
+
# restore if necessary
|
| 114 |
+
if backend_saved != backend:
|
| 115 |
+
plt.switch_backend(backend_saved)
|
| 116 |
|
| 117 |
return plt
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
_ = """
|
| 121 |
+
eps: float = 10
|
| 122 |
+
min_samples: int = 6
|
| 123 |
+
xlabel: str = ""
|
| 124 |
+
ylabel: str = ""
|
| 125 |
+
xlim: int = 0
|
| 126 |
+
ylim: int = 0
|
| 127 |
+
"""
|
radiobee/trim_df.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Trim df."""
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# fmt: off
|
| 6 |
+
def trim_df(
|
| 7 |
+
df1: pd.DataFrame,
|
| 8 |
+
len_: int = 4,
|
| 9 |
+
) -> pd.DataFrame:
|
| 10 |
+
# fmt: on
|
| 11 |
+
"""Trim df."""
|
| 12 |
+
if len(df1) > 2 * len_:
|
| 13 |
+
df_trimmed = pd.concat(
|
| 14 |
+
[
|
| 15 |
+
df1.iloc[:len_, :],
|
| 16 |
+
pd.DataFrame(
|
| 17 |
+
[
|
| 18 |
+
[
|
| 19 |
+
"...",
|
| 20 |
+
"...",
|
| 21 |
+
]
|
| 22 |
+
],
|
| 23 |
+
columns=df1.columns,
|
| 24 |
+
),
|
| 25 |
+
df1.iloc[-len_:, :],
|
| 26 |
+
],
|
| 27 |
+
ignore_index=1,
|
| 28 |
+
)
|
| 29 |
+
return df_trimmed
|
| 30 |
+
return df1
|
run-radiobee.bat
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
REM nodemon -V -w radiobee -x "sleep 3 && python -m radiobee"
|
| 2 |
REM nodemon -V -w radiobee -x python -m radiobee
|
| 3 |
-
nodemon -V -w radiobee -x py -3.8 -m radiobee
|
|
|
|
|
|
| 1 |
REM nodemon -V -w radiobee -x "sleep 3 && python -m radiobee"
|
| 2 |
REM nodemon -V -w radiobee -x python -m radiobee
|
| 3 |
+
REM nodemon -V -w radiobee -x py -3.8 -m radiobee
|
| 4 |
+
nodemon -V -w radiobee -x "run-p pyright flake8 && py -3.8 -m radiobee"
|