Spaces:
Runtime error
Runtime error
"""Application""" | |
import os | |
import gradio as gr | |
from questions import get_questions_data | |
from submit import submit_answers | |
from payload import get_answer_payload_results_log | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
API_URL = DEFAULT_API_URL | |
QUESTIONS_URL = f"{API_URL}/questions" | |
SUBMIT_URL = f"{API_URL}/submit" | |
FILES_URL = f"{API_URL}/files" | |
SPACE_ID = os.getenv("SPACE_ID") | |
if SPACE_ID: | |
AGENT_CODE = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main" | |
print(f"Agent Code URL: {AGENT_CODE}") | |
def _check_agent_dependent_environment_variables() -> str: | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
if not openai_api_key: | |
return "OPENAI_API_KEY environment variable must be set" | |
manger_model_id = os.getenv("MANAGER_MODEL_ID") | |
if not manger_model_id: | |
return "MANAGER_MODEL_ID environment variable must be set" | |
manager_base_url = os.getenv("MANGER_BASE_URL") | |
if not manager_base_url: | |
return "MANGER_BASE_URL environment variable must be set" | |
return None | |
def run_and_submit_all( | |
profile: gr.OAuthProfile | None, | |
): # pylint: disable=too-many-return-statements | |
"""Run and Submit All""" | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
if not SPACE_ID: | |
print("SPACE_ID must be set") | |
return "SPACE_ID environment variable must be set", None | |
error_message = _check_agent_dependent_environment_variables() | |
if error_message: | |
return error_message, None | |
questions_data = get_questions_data( | |
questions_url=QUESTIONS_URL, files_url=FILES_URL | |
) | |
if not questions_data: | |
print("Questions list is empty.") | |
return "Questions list is empty or invalid format.", None | |
print(f"Retrieved {len(questions_data)} questions.") | |
answers_payload, results_df, error_message = get_answer_payload_results_log( | |
questions_data=questions_data | |
) | |
if error_message: | |
return error_message, results_df | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": AGENT_CODE, | |
"answers": answers_payload, | |
} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." # pylint: disable=line-too-long | |
print(status_update) | |
print(f"Submitting {len(answers_payload)} answers to: {SUBMIT_URL}") | |
final_status, error_message = submit_answers( | |
submit_url=SUBMIT_URL, submission_data=submission_data | |
) | |
if final_status: | |
return final_status, results_df | |
return error_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
# pylint: disable=line-too-long | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
# pylint: enable=line-too-long | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox( | |
label="Run Status / Submission Result", lines=5, interactive=False | |
) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( # pylint: disable=no-member | |
fn=run_and_submit_all, outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print( | |
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main" | |
) | |
else: | |
print( | |
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined." # pylint: disable=line-too-long | |
) # pylint: disable=line-too-long | |
print("-" * (60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |