Mike Jay commited on
Commit
dea8abd
ยท
1 Parent(s): 1a98b04

wip preserve original

Browse files
Files changed (7) hide show
  1. README.md +7 -4
  2. app.py +180 -0
  3. config.py +2 -0
  4. dev.requirements.txt +6 -0
  5. fetch_questions.py +26 -0
  6. original.py +196 -0
  7. requirements.txt +3 -0
README.md CHANGED
@@ -1,14 +1,17 @@
1
  ---
2
  title: Unit4 Final Project Agents Course
3
  emoji: ๐Ÿ†
4
- colorFrom: indigo
5
- colorTo: purple
6
  sdk: gradio
7
  sdk_version: 5.35.0
 
8
  app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
  short_description: Repository for the Agents Course Unit 4 Final Project
 
 
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: Unit4 Final Project Agents Course
3
  emoji: ๐Ÿ†
4
+ colorFrom: blue
5
+ colorTo: green
6
  sdk: gradio
7
  sdk_version: 5.35.0
8
+ python_version: 3.12.9
9
  app_file: app.py
10
+ tags: ["agents-course", "unit4", "final-project"]
11
+ pinned: true
12
  short_description: Repository for the Agents Course Unit 4 Final Project
13
+ hf_oauth: true
14
+ hf_oauth_expiration_minutes: 480
15
  ---
16
 
17
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+
7
+ # (Keep Constants as is)
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+
11
+ # --- Basic Agent Definition ---
12
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
+ class BasicAgent:
14
+ def __init__(self):
15
+ print("BasicAgent initialized.")
16
+ def __call__(self, question: str) -> str:
17
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
18
+ fixed_answer = "This is a default answer."
19
+ print(f"Agent returning fixed answer: {fixed_answer}")
20
+ return fixed_answer
21
+
22
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
23
+ """
24
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
25
+ and displays the results.
26
+ """
27
+ # --- Determine HF Space Runtime URL and Repo URL ---
28
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
+
30
+ if profile:
31
+ username= f"{profile.username}"
32
+ print(f"User logged in: {username}")
33
+ else:
34
+ print("User not logged in.")
35
+ return "Please Login to Hugging Face with the button.", None
36
+
37
+ api_url = DEFAULT_API_URL
38
+ questions_url = f"{api_url}/questions"
39
+ submit_url = f"{api_url}/submit"
40
+
41
+ # 1. Instantiate Agent ( modify this part to create your agent)
42
+ try:
43
+ agent = BasicAgent()
44
+ except Exception as e:
45
+ print(f"Error instantiating agent: {e}")
46
+ return f"Error initializing agent: {e}", None
47
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
+ print(agent_code)
50
+
51
+ # 2. Fetch Questions
52
+ status_output, questions_data = fetch_questions(questions_url)
53
+ if not question_data:
54
+ return status_output, None
55
+
56
+ # 3. Run your Agent
57
+ results_log = []
58
+ answers_payload = []
59
+ print(f"Running agent on {len(questions_data)} questions...")
60
+ for item in questions_data:
61
+ task_id = item.get("task_id")
62
+ question_text = item.get("question")
63
+ if not task_id or question_text is None:
64
+ print(f"Skipping item with missing task_id or question: {item}")
65
+ continue
66
+ try:
67
+ submitted_answer = agent(question_text)
68
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
69
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
70
+ except Exception as e:
71
+ print(f"Error running agent on task {task_id}: {e}")
72
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
73
+
74
+ if not answers_payload:
75
+ print("Agent did not produce any answers to submit.")
76
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
77
+
78
+ # 4. Prepare Submission
79
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
80
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
81
+ print(status_update)
82
+
83
+ # 5. Submit
84
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
85
+ try:
86
+ response = requests.post(submit_url, json=submission_data, timeout=60)
87
+ response.raise_for_status()
88
+ result_data = response.json()
89
+ final_status = (
90
+ f"Submission Successful!\n"
91
+ f"User: {result_data.get('username')}\n"
92
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
93
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
94
+ f"Message: {result_data.get('message', 'No message received.')}"
95
+ )
96
+ print("Submission successful.")
97
+ results_df = pd.DataFrame(results_log)
98
+ return final_status, results_df
99
+ except requests.exceptions.HTTPError as e:
100
+ error_detail = f"Server responded with status {e.response.status_code}."
101
+ try:
102
+ error_json = e.response.json()
103
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
104
+ except requests.exceptions.JSONDecodeError:
105
+ error_detail += f" Response: {e.response.text[:500]}"
106
+ status_message = f"Submission Failed: {error_detail}"
107
+ print(status_message)
108
+ results_df = pd.DataFrame(results_log)
109
+ return status_message, results_df
110
+ except requests.exceptions.Timeout:
111
+ status_message = "Submission Failed: The request timed out."
112
+ print(status_message)
113
+ results_df = pd.DataFrame(results_log)
114
+ return status_message, results_df
115
+ except requests.exceptions.RequestException as e:
116
+ status_message = f"Submission Failed: Network error - {e}"
117
+ print(status_message)
118
+ results_df = pd.DataFrame(results_log)
119
+ return status_message, results_df
120
+ except Exception as e:
121
+ status_message = f"An unexpected error occurred during submission: {e}"
122
+ print(status_message)
123
+ results_df = pd.DataFrame(results_log)
124
+ return status_message, results_df
125
+
126
+
127
+ # --- Build Gradio Interface using Blocks ---
128
+ with gr.Blocks() as demo:
129
+ gr.Markdown("# Basic Agent Evaluation Runner")
130
+ gr.Markdown(
131
+ """
132
+ **Instructions:**
133
+
134
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
135
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
136
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
137
+
138
+ ---
139
+ **Disclaimers:**
140
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
141
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
142
+ """
143
+ )
144
+
145
+ gr.LoginButton()
146
+
147
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
148
+
149
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
150
+ # Removed max_rows=10 from DataFrame constructor
151
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
152
+
153
+ run_button.click(
154
+ fn=run_and_submit_all,
155
+ outputs=[status_output, results_table]
156
+ )
157
+
158
+ if __name__ == "__main__":
159
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
160
+ # Check for SPACE_HOST and SPACE_ID at startup for information
161
+ space_host_startup = os.getenv("SPACE_HOST")
162
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
163
+
164
+ if space_host_startup:
165
+ print(f"โœ… SPACE_HOST found: {space_host_startup}")
166
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
167
+ else:
168
+ print("โ„น๏ธ SPACE_HOST environment variable not found (running locally?).")
169
+
170
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
171
+ print(f"โœ… SPACE_ID found: {space_id_startup}")
172
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
173
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
174
+ else:
175
+ print("โ„น๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
176
+
177
+ print("-"*(60 + len(" App Starting ")) + "\n")
178
+
179
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
180
+ demo.launch(debug=True, share=False)
config.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
2
+
dev.requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ -r requirements.txt
2
+ black
3
+ pylint
4
+ pytest
5
+ wheel
6
+
fetch_questions.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Fetch Questions from Hugging Face API"""
2
+
3
+ import requests
4
+
5
+ from config import DEFAULT_API_URL
6
+
7
+ def fetch_questions(questions_url: str) -> str, list:
8
+ print(f"Fetching questions from: {questions_url}")
9
+ try:
10
+ response = requests.get(questions_url, timeout=15)
11
+ response.raise_for_status()
12
+ questions_data = response.json()
13
+ if not questions_data:
14
+ print("Fetched questions list is empty.")
15
+ return "Fetched questions list is empty or invalid format.", None
16
+ print(f"Fetched {len(questions_data)} questions.")
17
+ except requests.exceptions.RequestException as e:
18
+ print(f"Error fetching questions: {e}")
19
+ return f"Error fetching questions: {e}", None
20
+ except requests.exceptions.JSONDecodeError as e:
21
+ print(f"Error decoding JSON response from questions endpoint: {e}")
22
+ print(f"Response text: {response.text[:500]}")
23
+ return f"Error decoding server response for questions: {e}", None
24
+ except Exception as e:
25
+ print(f"An unexpected error occurred fetching questions: {e}")
26
+ return f"An unexpected error occurred fetching questions: {e}", None
original.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+
7
+ # (Keep Constants as is)
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+
11
+ # --- Basic Agent Definition ---
12
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
+ class BasicAgent:
14
+ def __init__(self):
15
+ print("BasicAgent initialized.")
16
+ def __call__(self, question: str) -> str:
17
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
18
+ fixed_answer = "This is a default answer."
19
+ print(f"Agent returning fixed answer: {fixed_answer}")
20
+ return fixed_answer
21
+
22
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
23
+ """
24
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
25
+ and displays the results.
26
+ """
27
+ # --- Determine HF Space Runtime URL and Repo URL ---
28
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
+
30
+ if profile:
31
+ username= f"{profile.username}"
32
+ print(f"User logged in: {username}")
33
+ else:
34
+ print("User not logged in.")
35
+ return "Please Login to Hugging Face with the button.", None
36
+
37
+ api_url = DEFAULT_API_URL
38
+ questions_url = f"{api_url}/questions"
39
+ submit_url = f"{api_url}/submit"
40
+
41
+ # 1. Instantiate Agent ( modify this part to create your agent)
42
+ try:
43
+ agent = BasicAgent()
44
+ except Exception as e:
45
+ print(f"Error instantiating agent: {e}")
46
+ return f"Error initializing agent: {e}", None
47
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
+ print(agent_code)
50
+
51
+ # 2. Fetch Questions
52
+ print(f"Fetching questions from: {questions_url}")
53
+ try:
54
+ response = requests.get(questions_url, timeout=15)
55
+ response.raise_for_status()
56
+ questions_data = response.json()
57
+ if not questions_data:
58
+ print("Fetched questions list is empty.")
59
+ return "Fetched questions list is empty or invalid format.", None
60
+ print(f"Fetched {len(questions_data)} questions.")
61
+ except requests.exceptions.RequestException as e:
62
+ print(f"Error fetching questions: {e}")
63
+ return f"Error fetching questions: {e}", None
64
+ except requests.exceptions.JSONDecodeError as e:
65
+ print(f"Error decoding JSON response from questions endpoint: {e}")
66
+ print(f"Response text: {response.text[:500]}")
67
+ return f"Error decoding server response for questions: {e}", None
68
+ except Exception as e:
69
+ print(f"An unexpected error occurred fetching questions: {e}")
70
+ return f"An unexpected error occurred fetching questions: {e}", None
71
+
72
+ # 3. Run your Agent
73
+ results_log = []
74
+ answers_payload = []
75
+ print(f"Running agent on {len(questions_data)} questions...")
76
+ for item in questions_data:
77
+ task_id = item.get("task_id")
78
+ question_text = item.get("question")
79
+ if not task_id or question_text is None:
80
+ print(f"Skipping item with missing task_id or question: {item}")
81
+ continue
82
+ try:
83
+ submitted_answer = agent(question_text)
84
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
+ except Exception as e:
87
+ print(f"Error running agent on task {task_id}: {e}")
88
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
+
90
+ if not answers_payload:
91
+ print("Agent did not produce any answers to submit.")
92
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
+
94
+ # 4. Prepare Submission
95
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
+ print(status_update)
98
+
99
+ # 5. Submit
100
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
+ try:
102
+ response = requests.post(submit_url, json=submission_data, timeout=60)
103
+ response.raise_for_status()
104
+ result_data = response.json()
105
+ final_status = (
106
+ f"Submission Successful!\n"
107
+ f"User: {result_data.get('username')}\n"
108
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
109
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
+ f"Message: {result_data.get('message', 'No message received.')}"
111
+ )
112
+ print("Submission successful.")
113
+ results_df = pd.DataFrame(results_log)
114
+ return final_status, results_df
115
+ except requests.exceptions.HTTPError as e:
116
+ error_detail = f"Server responded with status {e.response.status_code}."
117
+ try:
118
+ error_json = e.response.json()
119
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
+ except requests.exceptions.JSONDecodeError:
121
+ error_detail += f" Response: {e.response.text[:500]}"
122
+ status_message = f"Submission Failed: {error_detail}"
123
+ print(status_message)
124
+ results_df = pd.DataFrame(results_log)
125
+ return status_message, results_df
126
+ except requests.exceptions.Timeout:
127
+ status_message = "Submission Failed: The request timed out."
128
+ print(status_message)
129
+ results_df = pd.DataFrame(results_log)
130
+ return status_message, results_df
131
+ except requests.exceptions.RequestException as e:
132
+ status_message = f"Submission Failed: Network error - {e}"
133
+ print(status_message)
134
+ results_df = pd.DataFrame(results_log)
135
+ return status_message, results_df
136
+ except Exception as e:
137
+ status_message = f"An unexpected error occurred during submission: {e}"
138
+ print(status_message)
139
+ results_df = pd.DataFrame(results_log)
140
+ return status_message, results_df
141
+
142
+
143
+ # --- Build Gradio Interface using Blocks ---
144
+ with gr.Blocks() as demo:
145
+ gr.Markdown("# Basic Agent Evaluation Runner")
146
+ gr.Markdown(
147
+ """
148
+ **Instructions:**
149
+
150
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
+
154
+ ---
155
+ **Disclaimers:**
156
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
+ """
159
+ )
160
+
161
+ gr.LoginButton()
162
+
163
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
164
+
165
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
+ # Removed max_rows=10 from DataFrame constructor
167
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
+
169
+ run_button.click(
170
+ fn=run_and_submit_all,
171
+ outputs=[status_output, results_table]
172
+ )
173
+
174
+ if __name__ == "__main__":
175
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
176
+ # Check for SPACE_HOST and SPACE_ID at startup for information
177
+ space_host_startup = os.getenv("SPACE_HOST")
178
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
+
180
+ if space_host_startup:
181
+ print(f"โœ… SPACE_HOST found: {space_host_startup}")
182
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
+ else:
184
+ print("โ„น๏ธ SPACE_HOST environment variable not found (running locally?).")
185
+
186
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
187
+ print(f"โœ… SPACE_ID found: {space_id_startup}")
188
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
+ else:
191
+ print("โ„น๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
+
193
+ print("-"*(60 + len(" App Starting ")) + "\n")
194
+
195
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
196
+ demo.launch(debug=True, share=False)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ requests
3
+