Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from src.utils import * | |
| if __name__ == '__main__': | |
| theme = gr.themes.Soft(primary_hue="emerald", secondary_hue="stone", font=[gr.themes.GoogleFont("Source Sans 3", weights=(400, 600)),'arial']) | |
| with gr.Blocks(theme=theme) as demo: | |
| with gr.Column(elem_classes="header"): | |
| gr.Markdown("# MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data") | |
| gr.Markdown("### Paul Borne–Pons, Mikolaj Czerkawski, Rosalie Martin, Romain Rouffet") | |
| gr.Markdown('[[GitHub](https://github.com/PaulBorneP/MESA)] [[Model](https://huggingface.co/NewtNewt/MESA)] [[Dataset](https://huggingface.co/datasets/Major-TOM/Core-DEM)]') | |
| with gr.Column(elem_classes="abstract"): | |
| gr.Markdown("MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps.") # Replace with your abstract text | |
| gr.Markdown("This is a test version of the demo app. Please be aware that MESA supports primarily complex, mountainous terrains as opposed to flat land") | |
| gr.Markdown("The generated image is quite large, so for the full resolution (768) it might take a while to load the surface") | |
| with gr.Row(): | |
| prompt_input = gr.Textbox(lines=2, placeholder="Enter a terrain description...") | |
| generate_button = gr.Button("Generate Terrain", variant="primary") | |
| model_output = gr.Model3D( | |
| camera_position=[90, 180, 512] | |
| ) | |
| with gr.Accordion("Advanced Options", open=False) as advanced_options: | |
| num_inference_steps_slider = gr.Slider(minimum=10, maximum=1000, step=10, value=50, label="Inference Steps") | |
| guidance_scale_slider = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.5, label="Guidance Scale") | |
| seed_number = gr.Number(value=6378, label="Seed") | |
| crop_size_slider = gr.Slider(minimum=128, maximum=768, step=64, value=512, label="Crop Size") | |
| prefix_textbox = gr.Textbox(label="Prompt Prefix", value="A Sentinel-2 image of ") | |
| generate_button.click( | |
| fn=generate_and_display, | |
| inputs=[prompt_input, num_inference_steps_slider, guidance_scale_slider, seed_number, crop_size_slider, prefix_textbox], | |
| outputs=model_output, | |
| ) | |
| demo.queue().launch() | |