Spaces:
Running
Running
File size: 64,766 Bytes
df94830 7f85357 78423cd dbb4d15 12839ce 6dfc79e 12839ce 6dfc79e 12839ce df94830 7f85357 df94830 dbb4d15 6dfc79e dbb4d15 6dfc79e dbb4d15 df94830 12839ce dbb4d15 df94830 ba11a75 ffc2e6f 7f85357 df94830 f3a35a2 12839ce f3a35a2 12839ce df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f dbb4d15 ffc2e6f dbb4d15 df94830 7f85357 df94830 7f85357 ffc2e6f df94830 ffc2e6f ba11a75 ffc2e6f ba11a75 ffc2e6f ba11a75 e2619ba ffc2e6f ba11a75 e2619ba ffc2e6f ba11a75 e2619ba ffc2e6f ba11a75 ffc2e6f ba11a75 ffc2e6f dbb4d15 ffc2e6f ba11a75 ffc2e6f e2619ba ffc2e6f dbb4d15 ffc2e6f df94830 18fef2d df94830 18fef2d df94830 6dfc79e df94830 ba11a75 df94830 ba11a75 ffc2e6f ba11a75 ffc2e6f ba11a75 ffc2e6f df94830 ffc2e6f df94830 8b344c3 df94830 8b344c3 df94830 7f85357 df94830 12839ce 7f85357 df94830 e2619ba df94830 e2619ba 8b344c3 df94830 e2619ba df94830 ffc2e6f ba11a75 7f85357 ba11a75 df94830 ba11a75 7f85357 df94830 7f85357 c3a140d 7f85357 e2619ba 8d22c88 78423cd 6dfc79e 78423cd c3a140d 78423cd c3a140d 78423cd dbb4d15 78423cd dbb4d15 6dfc79e dbb4d15 c3a140d dbb4d15 c3a140d dbb4d15 78423cd dbb4d15 c3a140d dbb4d15 c3a140d dbb4d15 78423cd dbb4d15 78423cd c3a140d df94830 7f85357 6dfc79e e2619ba df94830 e2619ba df94830 ffc2e6f 12839ce ffc2e6f df94830 ba11a75 df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f c3a140d e2619ba dbb4d15 8b344c3 e2619ba c3a140d e2619ba dbb4d15 c3a140d 8b344c3 e2619ba 8b344c3 df94830 e2619ba 78423cd e2619ba df94830 e2619ba df94830 ba11a75 df94830 8b344c3 df94830 ffc2e6f 8b344c3 e2619ba ba11a75 e2619ba 8b344c3 e2619ba c3a140d 8b344c3 ba11a75 e2619ba 8b344c3 12839ce 8b344c3 7f85357 78423cd 7f85357 78423cd 7f85357 ffc2e6f 78423cd df94830 78423cd ba11a75 df94830 78423cd df94830 c3a140d e2619ba c3a140d 8b344c3 e2619ba ffc2e6f 7f85357 78423cd df94830 c3a140d e2619ba df94830 e2619ba df94830 c3a140d 78423cd df94830 78423cd df94830 78423cd 8d22c88 df94830 78423cd df94830 ffc2e6f dbb4d15 ffc2e6f 78423cd ffc2e6f 78423cd ffc2e6f 78423cd df94830 78423cd dbb4d15 78423cd ffc2e6f 78423cd dbb4d15 78423cd ffc2e6f 78423cd ffc2e6f 78423cd dbb4d15 e2619ba c3a140d 78423cd 8d22c88 78423cd df94830 e2619ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 |
import gradio as gr
import json
import zipfile
import io
import os
from datetime import datetime
from dotenv import load_dotenv
import requests
from bs4 import BeautifulSoup
import tempfile
from pathlib import Path
from support_docs import create_support_docs, export_conversation_to_markdown
# Simple URL content fetching using requests and BeautifulSoup
def get_grounding_context_simple(urls):
"""Fetch grounding context using enhanced HTTP requests"""
if not urls:
return ""
context_parts = []
for i, url in enumerate(urls, 1):
if url and url.strip():
# Use enhanced URL extraction for any URLs within the URL text
extracted_urls = extract_urls_from_text(url.strip())
target_url = extracted_urls[0] if extracted_urls else url.strip()
content = enhanced_fetch_url_content(target_url)
context_parts.append(f"Context from URL {i} ({target_url}):\n{content}")
if context_parts:
return "\n\n" + "\n\n".join(context_parts) + "\n\n"
return ""
# Import RAG components
try:
from rag_tool import RAGTool
HAS_RAG = True
except ImportError:
HAS_RAG = False
RAGTool = None
# Load environment variables from .env file
load_dotenv()
# Utility functions
import re
def extract_urls_from_text(text):
"""Extract URLs from text using regex with enhanced validation"""
url_pattern = r'https?://[^\s<>"{}|\\^`\[\]"]+'
urls = re.findall(url_pattern, text)
# Basic URL validation and cleanup
validated_urls = []
for url in urls:
# Remove trailing punctuation that might be captured
url = url.rstrip('.,!?;:')
# Basic domain validation
if '.' in url and len(url) > 10:
validated_urls.append(url)
return validated_urls
def validate_url_domain(url):
"""Basic URL domain validation"""
try:
from urllib.parse import urlparse
parsed = urlparse(url)
# Check for valid domain structure
if parsed.netloc and '.' in parsed.netloc:
return True
except:
pass
return False
def enhanced_fetch_url_content(url, enable_search_validation=False):
"""Enhanced URL content fetching with optional search validation"""
if not validate_url_domain(url):
return f"Invalid URL format: {url}"
try:
# Enhanced headers for better compatibility
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'Connection': 'keep-alive'
}
response = requests.get(url, timeout=15, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Enhanced content cleaning
for element in soup(["script", "style", "nav", "header", "footer", "aside", "form", "button"]):
element.decompose()
# Extract main content preferentially
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=lambda x: x and 'content' in x.lower()) or soup
text = main_content.get_text()
# Enhanced text cleaning
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk and len(chunk) > 2)
# Smart truncation - try to end at sentence boundaries
if len(text) > 4000:
truncated = text[:4000]
last_period = truncated.rfind('.')
if last_period > 3000: # If we can find a reasonable sentence break
text = truncated[:last_period + 1]
else:
text = truncated + "..."
return text if text.strip() else "No readable content found at this URL"
except requests.exceptions.Timeout:
return f"Timeout error fetching {url} (15s limit exceeded)"
except requests.exceptions.RequestException as e:
return f"Error fetching {url}: {str(e)}"
except Exception as e:
return f"Error processing content from {url}: {str(e)}"
# Template for generated space app (based on mvp_simple.py)
SPACE_TEMPLATE = '''import gradio as gr
import os
import requests
import json
from bs4 import BeautifulSoup
from datetime import datetime
import tempfile
# Configuration
SPACE_NAME = "{name}"
SPACE_DESCRIPTION = "{description}"
SYSTEM_PROMPT = """{system_prompt}"""
MODEL = "{model}"
GROUNDING_URLS = {grounding_urls}
# Get access code from environment variable for security
ACCESS_CODE = os.environ.get("SPACE_ACCESS_CODE", "{access_code}")
ENABLE_DYNAMIC_URLS = {enable_dynamic_urls}
ENABLE_VECTOR_RAG = {enable_vector_rag}
RAG_DATA = {rag_data_json}
# Get API key from environment - customizable variable name
API_KEY = os.environ.get("{api_key_var}")
def fetch_url_content(url):
"""Fetch and extract text content from a URL using requests and BeautifulSoup"""
try:
response = requests.get(url, timeout=10, headers={{'User-Agent': 'Mozilla/5.0'}})
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style", "nav", "header", "footer"]):
script.decompose()
# Get text content
text = soup.get_text()
# Clean up whitespace
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
# Truncate to ~4000 characters
if len(text) > 4000:
text = text[:4000] + "..."
return text
except Exception as e:
return f"Error fetching {{url}}: {{str(e)}}"
# Global cache for URL content to avoid re-crawling in generated spaces
_url_content_cache = {{}}
def get_grounding_context():
"""Fetch context from grounding URLs with caching"""
if not GROUNDING_URLS:
return ""
# Create cache key from URLs
cache_key = tuple(sorted([url for url in GROUNDING_URLS if url and url.strip()]))
# Check cache first
if cache_key in _url_content_cache:
return _url_content_cache[cache_key]
context_parts = []
for i, url in enumerate(GROUNDING_URLS, 1):
if url.strip():
content = fetch_url_content(url.strip())
context_parts.append(f"Context from URL {{i}} ({{url}}):\\n{{content}}")
if context_parts:
result = "\\n\\n" + "\\n\\n".join(context_parts) + "\\n\\n"
else:
result = ""
# Cache the result
_url_content_cache[cache_key] = result
return result
def export_conversation_to_markdown(conversation_history):
"""Export conversation history to markdown format"""
if not conversation_history:
return "No conversation to export."
markdown_content = f"""# Conversation Export
Generated on: {{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}}
---
"""
for i, message in enumerate(conversation_history):
if isinstance(message, dict):
role = message.get('role', 'unknown')
content = message.get('content', '')
if role == 'user':
markdown_content += f"## User Message {{(i//2) + 1}}\\n\\n{{content}}\\n\\n"
elif role == 'assistant':
markdown_content += f"## Assistant Response {{(i//2) + 1}}\\n\\n{{content}}\\n\\n---\\n\\n"
return markdown_content
# Initialize RAG context if enabled
if ENABLE_VECTOR_RAG and RAG_DATA:
try:
import faiss
import numpy as np
import base64
class SimpleRAGContext:
def __init__(self, rag_data):
# Deserialize FAISS index
index_bytes = base64.b64decode(rag_data['index_base64'])
self.index = faiss.deserialize_index(index_bytes)
# Restore chunks and mappings
self.chunks = rag_data['chunks']
self.chunk_ids = rag_data['chunk_ids']
def get_context(self, query, max_chunks=3):
"""Get relevant context - simplified version"""
# In production, you'd compute query embedding here
# For now, return a simple message
return "\\n\\n[RAG context would be retrieved here based on similarity search]\\n\\n"
rag_context_provider = SimpleRAGContext(RAG_DATA)
except Exception as e:
print(f"Failed to initialize RAG: {{e}}")
rag_context_provider = None
else:
rag_context_provider = None
def generate_response(message, history):
"""Generate response using OpenRouter API"""
if not API_KEY:
return "Please set your {api_key_var} in the Space settings."
# Get grounding context
grounding_context = get_grounding_context()
# Add RAG context if available
if ENABLE_VECTOR_RAG and rag_context_provider:
rag_context = rag_context_provider.get_context(message)
if rag_context:
grounding_context += rag_context
# If dynamic URLs are enabled, check message for URLs to fetch
if ENABLE_DYNAMIC_URLS:
urls_in_message = extract_urls_from_text(message)
if urls_in_message:
# Fetch content from URLs mentioned in the message
dynamic_context_parts = []
for url in urls_in_message[:3]: # Limit to 3 URLs per message
content = fetch_url_content(url)
dynamic_context_parts.append(f"\\n\\nDynamic context from {{url}}:\\n{{content}}")
if dynamic_context_parts:
grounding_context += "\\n".join(dynamic_context_parts)
# Build enhanced system prompt with grounding context
enhanced_system_prompt = SYSTEM_PROMPT + grounding_context
# Build messages array for the API
messages = [{{"role": "system", "content": enhanced_system_prompt}}]
# Add conversation history - compatible with Gradio 5.x format
for chat in history:
if isinstance(chat, dict):
# New format: {{"role": "user", "content": "..."}} or {{"role": "assistant", "content": "..."}}
messages.append(chat)
else:
# Legacy format: ("user msg", "bot msg")
user_msg, bot_msg = chat
messages.append({{"role": "user", "content": user_msg}})
if bot_msg:
messages.append({{"role": "assistant", "content": bot_msg}})
# Add current message
messages.append({{"role": "user", "content": message}})
# Make API request
try:
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={{
"Authorization": f"Bearer {{API_KEY}}",
"Content-Type": "application/json"
}},
json={{
"model": MODEL,
"messages": messages,
"temperature": {temperature},
"max_tokens": {max_tokens}
}}
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"Error: {{response.status_code}} - {{response.text}}"
except Exception as e:
return f"Error: {{str(e)}}"
# Access code verification
access_granted = gr.State(False)
_access_granted_global = False # Global fallback
def verify_access_code(code):
\"\"\"Verify the access code\"\"\"
global _access_granted_global
if not ACCESS_CODE:
_access_granted_global = True
return gr.update(visible=False), gr.update(visible=True), gr.update(value=True)
if code == ACCESS_CODE:
_access_granted_global = True
return gr.update(visible=False), gr.update(visible=True), gr.update(value=True)
else:
_access_granted_global = False
return gr.update(visible=True, value="❌ Incorrect access code. Please try again."), gr.update(visible=False), gr.update(value=False)
def protected_generate_response(message, history):
\"\"\"Protected response function that checks access\"\"\"
# Check if access is granted via the global variable
if ACCESS_CODE and not _access_granted_global:
return "Please enter the access code to continue."
return generate_response(message, history)
def export_conversation(history):
\"\"\"Export conversation to markdown file\"\"\"
if not history:
return gr.update(visible=False)
markdown_content = export_conversation_to_markdown(history)
# Save to temporary file
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False) as f:
f.write(markdown_content)
temp_file = f.name
return gr.update(value=temp_file, visible=True)
# Create interface with access code protection
with gr.Blocks(title=SPACE_NAME) as demo:
gr.Markdown(f"# {{SPACE_NAME}}")
gr.Markdown(SPACE_DESCRIPTION)
# Access code section (shown only if ACCESS_CODE is set)
with gr.Column(visible=bool(ACCESS_CODE)) as access_section:
gr.Markdown("### 🔐 Access Required")
gr.Markdown("Please enter the access code provided by your instructor:")
access_input = gr.Textbox(
label="Access Code",
placeholder="Enter access code...",
type="password"
)
access_btn = gr.Button("Submit", variant="primary")
access_error = gr.Markdown(visible=False)
# Main chat interface (hidden until access granted)
with gr.Column(visible=not bool(ACCESS_CODE)) as chat_section:
chat_interface = gr.ChatInterface(
fn=protected_generate_response,
title="", # Title already shown above
description="", # Description already shown above
examples=None
)
# Export functionality
with gr.Row():
export_btn = gr.Button("Export Conversation", variant="secondary", size="sm")
export_file = gr.File(label="Download Conversation", visible=False)
# Connect export functionality
export_btn.click(
export_conversation,
inputs=[chat_interface],
outputs=[export_file]
)
# Connect access verification
if ACCESS_CODE:
access_btn.click(
verify_access_code,
inputs=[access_input],
outputs=[access_error, chat_section, access_granted]
)
access_input.submit(
verify_access_code,
inputs=[access_input],
outputs=[access_error, chat_section, access_granted]
)
if __name__ == "__main__":
demo.launch()
'''
# Available models - Updated with valid OpenRouter model IDs
MODELS = [
"google/gemini-2.0-flash-001", # Fast, reliable, general tasks
"anthropic/claude-3.5-haiku", # Complex reasoning and analysis
"openai/gpt-4o-mini", # Balanced performance and cost
"meta-llama/llama-3.1-8b-instruct", # Open-source, efficient option
"mistralai/mistral-7b-instruct" # Good for technical topics
]
def fetch_url_content(url):
"""Fetch and extract text content from a URL - maintained for backward compatibility"""
return enhanced_fetch_url_content(url)
def get_grounding_context(urls):
"""Fetch context from grounding URLs"""
if not urls:
return ""
context_parts = []
for i, url in enumerate(urls, 1):
if url and url.strip():
content = fetch_url_content(url.strip())
context_parts.append(f"Context from URL {i} ({url}):\n{content}")
if context_parts:
return "\n\n" + "\n\n".join(context_parts) + "\n\n"
return ""
def create_readme(config):
"""Generate README with deployment instructions"""
return f"""---
title: {config['name']}
emoji: 🤖
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.35.0
app_file: app.py
pinned: false
---
# {config['name']}
{config['description']}
## Quick Deploy to HuggingFace Spaces
### Step 1: Create the Space
1. Go to https://huggingface.co/spaces
2. Click "Create new Space"
3. Choose a name for your Space
4. Select **Gradio** as the SDK
5. Set visibility (Public/Private)
6. Click "Create Space"
### Step 2: Upload Files
1. In your new Space, click "Files" tab
2. Upload these files from the zip:
- `app.py`
- `requirements.txt`
3. Wait for "Building" to complete
### Step 3: Add API Key
1. Go to Settings (gear icon)
2. Click "Variables and secrets"
3. Click "New secret"
4. Name: `{config['api_key_var']}`
5. Value: Your OpenRouter API key
6. Click "Add"
{f'''### Step 4: Configure Access Control
Your Space is configured with access code protection. Students will need to enter the access code to use the chatbot.
1. Go to Settings (gear icon)
2. Click "Variables and secrets"
3. Click "New secret"
4. Name: `SPACE_ACCESS_CODE`
5. Value: `{config['access_code']}`
6. Click "Add"
**Important**: The access code is now stored securely as an environment variable and is not visible in your app code.
To disable access protection:
1. Go to Settings → Variables and secrets
2. Delete the `SPACE_ACCESS_CODE` secret
3. The Space will rebuild automatically with no access protection
''' if config['access_code'] else ''}
### Step {4 if not config['access_code'] else 5}: Get Your API Key
1. Go to https://openrouter.ai/keys
2. Sign up/login if needed
3. Click "Create Key"
4. Copy the key (starts with `sk-or-`)
### Step {5 if not config['access_code'] else 6}: Test Your Space
- Go back to "App" tab
- Your Space should be running!
- Try the example prompts or ask a question
## Configuration
- **Model**: {config['model']}
- **Temperature**: {config['temperature']}
- **Max Tokens**: {config['max_tokens']}
- **API Key Variable**: {config['api_key_var']}"""
# Add optional configuration items
if config['access_code']:
readme_content += f"""
- **Access Code**: {config['access_code']} (Students need this to access the chatbot)"""
if config.get('enable_dynamic_urls'):
readme_content += """
- **Dynamic URL Fetching**: Enabled (Assistant can fetch URLs mentioned in conversations)"""
readme_content += f"""
## Customization
To modify your Space:
1. Edit `app.py` in your Space
2. Update configuration variables at the top
3. Changes deploy automatically
## Troubleshooting
- **"Please set your {config['api_key_var']}"**: Add the secret in Space settings
- **Error 401**: Invalid API key or no credits
- **Error 429**: Rate limit - wait and try again
- **Build failed**: Check requirements.txt formatting
## More Help
- HuggingFace Spaces: https://huggingface.co/docs/hub/spaces
- OpenRouter Docs: https://openrouter.ai/docs
- Gradio Docs: https://gradio.app/docs
---
Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} with Chat U/I Helper
"""
return readme_content
def create_requirements(enable_vector_rag=False):
"""Generate requirements.txt"""
base_requirements = "gradio>=5.35.0\nrequests>=2.32.3\nbeautifulsoup4>=4.12.3"
if enable_vector_rag:
base_requirements += "\nfaiss-cpu==1.7.4\nnumpy==1.24.3"
return base_requirements
def generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code="", enable_dynamic_urls=False, url1="", url2="", url3="", url4="", enable_vector_rag=False, rag_data=None):
"""Generate deployable zip file"""
# Process examples
if examples_text and examples_text.strip():
examples_list = [ex.strip() for ex in examples_text.split('\n') if ex.strip()]
examples_json = json.dumps(examples_list)
else:
examples_json = json.dumps([
"Hello! How can you help me?",
"Tell me something interesting",
"What can you do?"
])
# Process grounding URLs
grounding_urls = []
for url in [url1, url2, url3, url4]:
if url and url.strip():
grounding_urls.append(url.strip())
# Use the provided system prompt directly
# Create config
config = {
'name': name,
'description': description,
'system_prompt': system_prompt,
'model': model,
'api_key_var': api_key_var,
'temperature': temperature,
'max_tokens': int(max_tokens),
'examples': examples_json,
'grounding_urls': json.dumps(grounding_urls),
'access_code': "", # Access code stored in environment variable for security
'enable_dynamic_urls': enable_dynamic_urls,
'enable_vector_rag': enable_vector_rag,
'rag_data_json': json.dumps(rag_data) if rag_data else 'None'
}
# Generate files
app_content = SPACE_TEMPLATE.format(**config)
# Pass original access_code to README for documentation
readme_config = config.copy()
readme_config['access_code'] = access_code or ""
readme_content = create_readme(readme_config)
requirements_content = create_requirements(enable_vector_rag)
# Create zip file with clean naming
filename = f"{name.lower().replace(' ', '_').replace('-', '_')}.zip"
# Create zip in memory and save to disk
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
zip_file.writestr('app.py', app_content)
zip_file.writestr('requirements.txt', requirements_content)
zip_file.writestr('README.md', readme_content)
zip_file.writestr('config.json', json.dumps(config, indent=2))
# Write zip to file
zip_buffer.seek(0)
with open(filename, 'wb') as f:
f.write(zip_buffer.getvalue())
return filename
# Define callback functions outside the interface
def toggle_rag_section(enable_rag):
"""Toggle visibility of RAG section"""
return gr.update(visible=enable_rag)
def process_documents(files, current_rag_tool):
"""Process uploaded documents"""
if not files:
return "Please upload files first", current_rag_tool
if not HAS_RAG:
return "RAG functionality not available. Please install required dependencies.", current_rag_tool
try:
# Initialize RAG tool if not exists
if not current_rag_tool and RAGTool is not None:
current_rag_tool = RAGTool()
# Process files
result = current_rag_tool.process_uploaded_files(files)
if result['success']:
# Create status message
status_parts = [f"✅ {result['message']}"]
# Add file summary
if result['summary']['files_processed']:
status_parts.append("\n**Processed files:**")
for file_info in result['summary']['files_processed']:
status_parts.append(f"- {file_info['name']} ({file_info['chunks']} chunks)")
# Add errors if any
if result.get('errors'):
status_parts.append("\n**Errors:**")
for error in result['errors']:
status_parts.append(f"- {error['file']}: {error['error']}")
# Add index stats
if result.get('index_stats'):
stats = result['index_stats']
status_parts.append(f"\n**Index stats:** {stats['total_chunks']} chunks, {stats['dimension']}D embeddings")
return "\n".join(status_parts), current_rag_tool
else:
return f"❌ {result['message']}", current_rag_tool
except Exception as e:
return f"❌ Error processing documents: {str(e)}", current_rag_tool
def update_sandbox_preview(config_data):
"""Update the sandbox preview with generated content"""
if not config_data:
return "Generate a space configuration to see preview here.", "<div style='text-align: center; padding: 50px; color: #666;'>No preview available</div>"
# Create preview info
preview_text = f"""**Space Configuration:**
- **Name:** {config_data.get('name', 'N/A')}
- **Model:** {config_data.get('model', 'N/A')}
- **Temperature:** {config_data.get('temperature', 'N/A')}
- **Max Tokens:** {config_data.get('max_tokens', 'N/A')}
- **Dynamic URLs:** {'✅ Enabled' if config_data.get('enable_dynamic_urls') else '❌ Disabled'}
- **Vector RAG:** {'✅ Enabled' if config_data.get('enable_vector_rag') else '❌ Disabled'}
**System Prompt Preview:**
```
{config_data.get('system_prompt', 'No system prompt configured')[:500]}{'...' if len(config_data.get('system_prompt', '')) > 500 else ''}
```
**Deployment Package:** `{config_data.get('filename', 'Not generated')}`"""
# Create a basic HTML preview of the chat interface
preview_html = f"""
<div style="border: 1px solid #ddd; border-radius: 8px; padding: 20px; background: #f9f9f9;">
<h3 style="margin-top: 0; color: #333;">{config_data.get('name', 'Chat Interface')}</h3>
<p style="color: #666; margin-bottom: 20px;">{config_data.get('description', 'A customizable AI chat interface')}</p>
<div style="border: 1px solid #ccc; border-radius: 4px; background: white; min-height: 200px; padding: 15px; margin-bottom: 15px;">
<div style="color: #888; text-align: center; padding: 50px 0;">Chat Interface Preview</div>
<div style="background: #f0f8ff; padding: 10px; border-radius: 4px; margin-bottom: 10px; border-left: 3px solid #0066cc;">
<strong>Assistant:</strong> Hello! I'm ready to help you. How can I assist you today?
</div>
</div>
<div style="border: 1px solid #ccc; border-radius: 4px; padding: 10px; background: white;">
<input type="text" placeholder="Type your message here..." style="width: 70%; padding: 8px; border: 1px solid #ddd; border-radius: 4px; margin-right: 10px;">
<button style="padding: 8px 15px; background: #0066cc; color: white; border: none; border-radius: 4px; cursor: pointer;">Send</button>
</div>
<div style="margin-top: 15px; padding: 10px; background: #f0f0f0; border-radius: 4px; font-size: 12px; color: #666;">
<strong>Configuration:</strong> Model: {config_data.get('model', 'N/A')} | Temperature: {config_data.get('temperature', 'N/A')} | Max Tokens: {config_data.get('max_tokens', 'N/A')}
</div>
</div>
"""
return preview_text, preview_html
def on_preview_combined(name, description, system_prompt, enable_research_assistant, model, temperature, max_tokens, examples_text, enable_dynamic_urls, enable_vector_rag):
"""Generate configuration and return preview updates"""
if not name or not name.strip():
return (
{},
gr.update(value="**Error:** Please provide a Space Title to preview", visible=True),
gr.update(visible=False),
gr.update(value="Configuration will appear here after preview generation.")
)
try:
# Use the system prompt directly (research assistant toggle already updates it)
if not system_prompt or not system_prompt.strip():
return (
{},
gr.update(value="**Error:** Please provide a System Prompt for the assistant", visible=True),
gr.update(visible=False),
gr.update(value="Configuration will appear here after preview generation.")
)
final_system_prompt = system_prompt.strip()
# Create configuration for preview
config_data = {
'name': name,
'description': description,
'system_prompt': final_system_prompt,
'model': model,
'temperature': temperature,
'max_tokens': max_tokens,
'enable_dynamic_urls': enable_dynamic_urls,
'enable_vector_rag': enable_vector_rag,
'examples_text': examples_text,
'preview_ready': True
}
# Generate preview displays
preview_text = f"""🎉 **Preview Successfully Rendered!**
Your assistant "{name}" is now configured and ready to test in the Sandbox Preview tab.
**Configuration:**
- **Model:** {model}
- **Temperature:** {temperature}
- **Max Tokens:** {max_tokens}
- **Dynamic URLs:** {'✅ Enabled' if enable_dynamic_urls else '❌ Disabled'}
- **Vector RAG:** {'✅ Enabled' if enable_vector_rag else '❌ Disabled'}
**System Prompt:**
{final_system_prompt[:200]}{'...' if len(final_system_prompt) > 200 else ''}
✨ **Next Steps:** Switch to the "Sandbox Preview" tab to test your assistant with real conversations before generating the deployment package."""
config_display = f"""### Current Configuration
**Space Details:**
- **Name:** {name}
- **Description:** {description or 'No description provided'}
**Model Settings:**
- **Model:** {model}
- **Temperature:** {temperature}
- **Max Response Tokens:** {max_tokens}
**Features:**
- **Dynamic URL Fetching:** {'✅ Enabled' if enable_dynamic_urls else '❌ Disabled'}
- **Document RAG:** {'✅ Enabled' if enable_vector_rag else '❌ Disabled'}
**System Prompt:**
```
{final_system_prompt}
```
**Example Prompts:**
{examples_text if examples_text and examples_text.strip() else 'No example prompts configured'}
"""
return (
config_data,
gr.update(value=preview_text, visible=True),
gr.update(visible=True),
gr.update(value=config_display)
)
except Exception as e:
return (
{},
gr.update(value=f"**Error:** {str(e)}", visible=True),
gr.update(visible=False),
gr.update(value="Configuration will appear here after preview generation.")
)
def update_preview_display(config_data):
"""Update preview display based on config data"""
if not config_data or not config_data.get('preview_ready'):
return (
gr.update(value="**Status:** Configure your space in the Configuration tab and click 'Preview Deployment Package' to see your assistant here.", visible=True),
gr.update(visible=False),
gr.update(value="Configuration will appear here after preview generation.")
)
preview_text = f"""**Preview Ready!**
Your assistant "{config_data['name']}" is configured and ready to test.
**Configuration:**
- **Model:** {config_data['model']}
- **Temperature:** {config_data['temperature']}
- **Max Tokens:** {config_data['max_tokens']}
- **Dynamic URLs:** {'✅ Enabled' if config_data['enable_dynamic_urls'] else '❌ Disabled'}
- **Vector RAG:** {'✅ Enabled' if config_data['enable_vector_rag'] else '❌ Disabled'}
**System Prompt:**
{config_data['system_prompt'][:200]}{'...' if len(config_data['system_prompt']) > 200 else ''}
Use the chat interface below to test your assistant before generating the deployment package."""
config_display = f"""### Current Configuration
**Space Details:**
- **Name:** {config_data['name']}
- **Description:** {config_data.get('description', 'No description provided')}
**Model Settings:**
- **Model:** {config_data['model']}
- **Temperature:** {config_data['temperature']}
- **Max Response Tokens:** {config_data['max_tokens']}
**Features:**
- **Dynamic URL Fetching:** {'✅ Enabled' if config_data['enable_dynamic_urls'] else '❌ Disabled'}
- **Document RAG:** {'✅ Enabled' if config_data['enable_vector_rag'] else '❌ Disabled'}
**System Prompt:**
```
{config_data['system_prompt']}
```
**Example Prompts:**
{config_data.get('examples_text', 'No example prompts configured') if config_data.get('examples_text', '').strip() else 'No example prompts configured'}
"""
return (
gr.update(value=preview_text, visible=True),
gr.update(visible=True),
gr.update(value=config_display)
)
def preview_chat_response(message, history, config_data, url1="", url2="", url3="", url4=""):
"""Generate response for preview chat using actual OpenRouter API"""
if not config_data or not message:
return "", history
# Get API key from environment
api_key = os.environ.get("OPENROUTER_API_KEY")
if not api_key:
response = f"[Preview Mode - No API Key] I'm {config_data.get('name', 'your assistant')} running on {config_data.get('model', 'unknown model')}. To test with real API responses, set your OPENROUTER_API_KEY in the environment. This preview would use your system prompt: {config_data.get('system_prompt', '')[:100]}..."
history.append([message, response])
return "", history
try:
# Get grounding context from URLs if configured
grounding_urls = [url1, url2, url3, url4]
grounding_context = get_cached_grounding_context([url for url in grounding_urls if url and url.strip()])
# Add RAG context if available (simplified for preview)
rag_context = ""
if config_data.get('enable_vector_rag'):
rag_context = "\n\n[RAG context would be retrieved here based on similarity search]\n\n"
# If dynamic URLs are enabled, check message for URLs to fetch
dynamic_context = ""
if config_data.get('enable_dynamic_urls'):
urls_in_message = extract_urls_from_text(message)
if urls_in_message:
dynamic_context_parts = []
for url in urls_in_message[:3]: # Increased limit to 3 URLs with enhanced processing
content = enhanced_fetch_url_content(url)
dynamic_context_parts.append(f"\n\nDynamic context from {url}:\n{content}")
if dynamic_context_parts:
dynamic_context = "\n".join(dynamic_context_parts)
# Build enhanced system prompt with all contexts
enhanced_system_prompt = config_data.get('system_prompt', '') + grounding_context + rag_context + dynamic_context
# Build messages array for the API
messages = [{"role": "system", "content": enhanced_system_prompt}]
# Add conversation history - handle both formats
for chat in history:
if isinstance(chat, list) and len(chat) >= 2:
# Legacy format: [user_msg, assistant_msg]
user_msg, assistant_msg = chat[0], chat[1]
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Debug: Log the request being sent
request_payload = {
"model": config_data.get('model', 'google/gemini-2.0-flash-001'),
"messages": messages,
"temperature": config_data.get('temperature', 0.7),
"max_tokens": config_data.get('max_tokens', 500)
}
# Make API request to OpenRouter
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
},
json=request_payload,
timeout=30
)
if response.status_code == 200:
try:
response_data = response.json()
# Check if response has expected structure
if 'choices' not in response_data or not response_data['choices']:
assistant_response = f"[Preview Debug] No choices in API response. Response: {response_data}"
elif 'message' not in response_data['choices'][0]:
assistant_response = f"[Preview Debug] No message in first choice. Response: {response_data}"
elif 'content' not in response_data['choices'][0]['message']:
assistant_response = f"[Preview Debug] No content in message. Response: {response_data}"
else:
assistant_content = response_data['choices'][0]['message']['content']
# Debug: Check if content is empty
if not assistant_content or assistant_content.strip() == "":
assistant_response = f"[Preview Debug] Empty content from API. Messages sent: {len(messages)} messages, last user message: '{message}', model: {request_payload['model']}"
else:
# Add preview indicator
assistant_response = f"[Preview Mode] {assistant_content}"
except (KeyError, IndexError, json.JSONDecodeError) as e:
assistant_response = f"[Preview Error] Failed to parse API response: {str(e)}. Raw response: {response.text[:500]}"
else:
assistant_response = f"[Preview Error] API Error: {response.status_code} - {response.text[:500]}"
except Exception as e:
assistant_response = f"[Preview Error] {str(e)}"
# Return in the legacy tuple format that Gradio ChatInterface expects
history.append([message, assistant_response])
return "", history
def clear_preview_chat():
"""Clear preview chat"""
return "", []
def export_preview_conversation(history):
"""Export preview conversation to markdown"""
if not history:
return gr.update(visible=False)
markdown_content = export_conversation_to_markdown(history)
# Save to temporary file
import tempfile
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False) as f:
f.write(markdown_content)
temp_file = f.name
return gr.update(value=temp_file, visible=True)
def on_generate(name, description, system_prompt, enable_research_assistant, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_tool_state):
if not name or not name.strip():
return gr.update(value="Error: Please provide a Space Title", visible=True), gr.update(visible=False)
try:
# Get RAG data if enabled
rag_data = None
if enable_vector_rag and rag_tool_state:
rag_data = rag_tool_state.get_serialized_data()
# Use the system prompt directly (research assistant toggle already updates it)
if not system_prompt or not system_prompt.strip():
return gr.update(value="Error: Please provide a System Prompt for the assistant", visible=True), gr.update(visible=False)
final_system_prompt = system_prompt.strip()
filename = generate_zip(name, description, final_system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_data)
success_msg = f"""**Deployment package ready!**
**File**: `{filename}`
**What's included:**
- `app.py` - Ready-to-deploy chat interface
- `requirements.txt` - Dependencies
- `README.md` - Step-by-step deployment guide
- `config.json` - Configuration backup
**Next steps:**
1. Download the zip file below
2. Follow the README instructions to deploy on HuggingFace Spaces
3. Set your `{api_key_var}` secret in Space settings
**Your Space will be live in minutes!**"""
# Update sandbox preview
config_data = {
'name': name,
'description': description,
'system_prompt': final_system_prompt,
'model': model,
'temperature': temperature,
'max_tokens': max_tokens,
'enable_dynamic_urls': enable_dynamic_urls,
'enable_vector_rag': enable_vector_rag,
'filename': filename
}
return gr.update(value=success_msg, visible=True), gr.update(value=filename, visible=True), config_data
except Exception as e:
return gr.update(value=f"Error: {str(e)}", visible=True), gr.update(visible=False)
# Global cache for URL content to avoid re-crawling
url_content_cache = {}
def get_cached_grounding_context(urls):
"""Get grounding context with caching to avoid re-crawling same URLs"""
if not urls:
return ""
# Filter valid URLs
valid_urls = [url for url in urls if url and url.strip()]
if not valid_urls:
return ""
# Create cache key from sorted URLs
cache_key = tuple(sorted(valid_urls))
# Check if we already have this content cached
if cache_key in url_content_cache:
return url_content_cache[cache_key]
# If not cached, fetch using simple HTTP requests
grounding_context = get_grounding_context_simple(valid_urls)
# Cache the result
url_content_cache[cache_key] = grounding_context
return grounding_context
def respond_with_cache_update(message, chat_history, url1="", url2="", url3="", url4=""):
"""Wrapper that updates cache status after responding"""
msg, history = respond(message, chat_history, url1, url2, url3, url4)
cache_status = get_cache_status()
return msg, history, cache_status
def respond(message, chat_history, url1="", url2="", url3="", url4=""):
# Make actual API request to OpenRouter
import os
import requests
# Get API key from environment
api_key = os.environ.get("OPENROUTER_API_KEY")
if not api_key:
response = "Please set your OPENROUTER_API_KEY in the Space settings to use the chat support."
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
return "", chat_history
# Get grounding context from URLs using cached approach
grounding_urls = [url1, url2, url3, url4]
grounding_context = get_cached_grounding_context(grounding_urls)
# Build enhanced system prompt with grounding context
base_system_prompt = """You are an expert assistant specializing in Gradio configurations for HuggingFace Spaces. You have deep knowledge of:
- Gradio interface components and layouts
- HuggingFace Spaces configuration (YAML frontmatter, secrets, environment variables)
- Deployment best practices for Gradio apps on HuggingFace
- Space settings, SDK versions, and hardware requirements
- Troubleshooting common Gradio and HuggingFace Spaces issues
- Integration with various APIs and models through Gradio interfaces
Provide specific, technical guidance focused on Gradio implementation details and HuggingFace Spaces deployment. Include code examples when relevant. Keep responses concise and actionable."""
enhanced_system_prompt = base_system_prompt + grounding_context
# Build conversation history for API
messages = [{
"role": "system",
"content": enhanced_system_prompt
}]
# Add conversation history - Support both new messages format and legacy tuple format
for chat in chat_history:
if isinstance(chat, dict):
# New format: {"role": "user", "content": "..."}
messages.append(chat)
elif isinstance(chat, (list, tuple)) and len(chat) >= 2:
# Legacy format: ("user msg", "bot msg")
user_msg, assistant_msg = chat[0], chat[1]
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
try:
# Make API request to OpenRouter
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
},
json={
"model": "google/gemini-2.0-flash-001",
"messages": messages,
"temperature": 0.7,
"max_tokens": 500
}
)
if response.status_code == 200:
assistant_response = response.json()['choices'][0]['message']['content']
else:
assistant_response = f"Error: {response.status_code} - {response.text}"
except Exception as e:
assistant_response = f"Error: {str(e)}"
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": assistant_response})
return "", chat_history
def clear_chat():
return "", []
def clear_url_cache():
"""Clear the URL content cache"""
global url_content_cache
url_content_cache.clear()
return "✅ URL cache cleared. Next request will re-fetch content."
def get_cache_status():
"""Get current cache status"""
if not url_content_cache:
return "🔄 No URLs cached"
return f"💾 {len(url_content_cache)} URL set(s) cached"
def add_urls(count):
"""Show additional URL fields"""
if count == 2:
return (gr.update(visible=True), gr.update(visible=False),
gr.update(value="+ Add URLs"), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=True), gr.update(visible=True),
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def remove_urls(count):
"""Hide URL fields"""
if count == 4:
return (gr.update(visible=True), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def add_chat_urls(count):
"""Show additional chat URL fields"""
if count == 2:
return (gr.update(visible=True), gr.update(visible=False),
gr.update(value="+ Add URLs"), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=True), gr.update(visible=True),
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def remove_chat_urls(count):
"""Hide chat URL fields"""
if count == 4:
return (gr.update(visible=True), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def toggle_research_assistant(enable_research):
"""Toggle research assistant system prompt"""
if enable_research:
combined_prompt = "You are a search tool that provides link-grounded information through web fetching, limiting source criteria to DOI-verified articles from academic databases and official sources. Use https://libkey.io/ to cross-reference and validate article DOIs for inclusion. This tool is designed for students and researchers conducting academic inquiry. Additional responsibilities include analyzing academic sources, fact-checking claims with evidence, providing properly cited research summaries, and helping users navigate scholarly information. Ground all responses in provided URL contexts and any additional URLs you're instructed to fetch. Never rely on memory for factual claims."
return (
gr.update(value=combined_prompt), # Update main system prompt
gr.update(value=True) # Enable dynamic URL fetching for research template
)
else:
return (
gr.update(value=""), # Clear main system prompt when disabling
gr.update(value=False) # Disable dynamic URL setting
)
# Create Gradio interface with proper tab structure
with gr.Blocks(title="Chat U/I Helper") as demo:
# Global state for cross-tab functionality
sandbox_state = gr.State({})
preview_config_state = gr.State({})
# Global status components that will be defined later
preview_status = None
preview_chat_section = None
config_display = None
with gr.Tabs():
with gr.Tab("Configuration"):
gr.Markdown("# Spaces Configuration")
gr.Markdown("Convert custom assistants from HuggingChat into chat interfaces with HuggingFace Spaces. Configure and download everything needed to deploy a simple HF space using Gradio.")
with gr.Column():
name = gr.Textbox(
label="Space Title",
placeholder="My Course Helper",
value="My Custom Space"
)
description = gr.Textbox(
label="Space Description",
placeholder="A customizable AI chat interface for...",
lines=2,
value=""
)
model = gr.Dropdown(
label="Model",
choices=MODELS,
value=MODELS[0],
info="Choose based on the context and purposes of your space"
)
api_key_var = gr.Textbox(
label="API Key Variable Name",
value="OPENROUTER_API_KEY",
info="Name for the secret in HuggingFace Space settings"
)
access_code = gr.Textbox(
label="Access Code (Optional)",
placeholder="Leave empty for public access, or enter code for student access",
info="If set, students must enter this code to access the chatbot",
type="password"
)
with gr.Accordion("Assistant Configuration", open=True):
gr.Markdown("### Configure your assistant's behavior and capabilities")
gr.Markdown("Define the system prompt and assistant settings. You can use pre-configured templates or custom fields.")
# Main system prompt field - always visible
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="You are a helpful assistant that...",
lines=4,
value="",
info="Define the assistant's role, purpose, and behavior in a single prompt"
)
# Assistant configuration options
enable_research_assistant = gr.Checkbox(
label="Research Template",
value=False,
info="Enable to use pre-configured research assistant settings"
)
examples_text = gr.Textbox(
label="Example Prompts (one per line)",
placeholder="Can you analyze this research paper: https://example.com/paper.pdf\nWhat are the latest findings on climate change adaptation?\nHelp me fact-check claims about renewable energy efficiency",
lines=3,
info="These will appear as clickable examples in the chat interface"
)
with gr.Accordion("Tool Settings", open=False):
enable_dynamic_urls = gr.Checkbox(
label="Enable Dynamic URL Fetching",
value=False,
info="Allow the assistant to fetch additional URLs mentioned in conversations"
)
enable_vector_rag = gr.Checkbox(
label="Enable Document RAG",
value=False,
info="Upload documents for context-aware responses (PDF, DOCX, TXT, MD)",
visible=HAS_RAG
)
with gr.Column(visible=False) as rag_section:
gr.Markdown("### Document Upload")
file_upload = gr.File(
label="Upload Documents",
file_types=[".pdf", ".docx", ".txt", ".md"],
file_count="multiple"
)
process_btn = gr.Button("Process Documents", variant="secondary")
rag_status = gr.Markdown()
# State to store RAG tool
rag_tool_state = gr.State(None)
with gr.Accordion("URL Grounding (Optional)", open=False):
gr.Markdown("Add URLs to provide context. Content will be fetched and added to the system prompt.")
# Initial URL fields
url1 = gr.Textbox(
label="URL 1",
placeholder="https://example.com/page1",
info="First URL for context grounding"
)
url2 = gr.Textbox(
label="URL 2",
placeholder="https://example.com/page2",
info="Second URL for context grounding"
)
# Additional URL fields (initially hidden)
url3 = gr.Textbox(
label="URL 3",
placeholder="https://example.com/page3",
info="Third URL for context grounding",
visible=False
)
url4 = gr.Textbox(
label="URL 4",
placeholder="https://example.com/page4",
info="Fourth URL for context grounding",
visible=False
)
# URL management buttons
with gr.Row():
add_url_btn = gr.Button("+ Add URLs", size="sm")
remove_url_btn = gr.Button("- Remove URLs", size="sm", visible=False)
url_count = gr.State(2) # Track number of visible URLs
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
temperature = gr.Slider(
label="Temperature",
minimum=0,
maximum=2,
value=0.7,
step=0.1,
info="Higher = more creative, Lower = more focused"
)
max_tokens = gr.Slider(
label="Max Response Tokens",
minimum=50,
maximum=4096,
value=500,
step=50
)
with gr.Row():
preview_btn = gr.Button("Preview Deployment Package", variant="secondary")
generate_btn = gr.Button("Generate Deployment Package", variant="primary")
status = gr.Markdown(visible=False)
download_file = gr.File(label="Download your zip package", visible=False)
# Connect the research assistant checkbox
enable_research_assistant.change(
toggle_research_assistant,
inputs=[enable_research_assistant],
outputs=[system_prompt, enable_dynamic_urls]
)
# Connect the URL management buttons
add_url_btn.click(
add_urls,
inputs=[url_count],
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count]
)
remove_url_btn.click(
remove_urls,
inputs=[url_count],
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count]
)
# Connect RAG functionality
enable_vector_rag.change(
toggle_rag_section,
inputs=[enable_vector_rag],
outputs=[rag_section]
)
process_btn.click(
process_documents,
inputs=[file_upload, rag_tool_state],
outputs=[rag_status, rag_tool_state]
)
# Connect the generate button
generate_btn.click(
on_generate,
inputs=[name, description, system_prompt, enable_research_assistant, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_tool_state],
outputs=[status, download_file, sandbox_state]
)
with gr.Tab("Preview"):
gr.Markdown("# Sandbox Preview")
gr.Markdown("Preview your generated assistant exactly as it will appear in the deployed HuggingFace Space.")
with gr.Column():
# Preview status - assign to global variable
preview_status_comp = gr.Markdown("**Status:** Configure your space in the Configuration tab and click 'Preview Deployment Package' to see your assistant here.", visible=True)
# Simulated chat interface for preview
with gr.Column(visible=False) as preview_chat_section_comp:
preview_chatbot = gr.Chatbot(
value=[],
label="Preview Chat Interface",
height=400,
type="tuples"
)
preview_msg = gr.Textbox(
label="Test your assistant",
placeholder="Type a message to test your assistant...",
lines=2
)
# URL context fields for preview testing
with gr.Accordion("Test URL Context (Optional)", open=False):
gr.Markdown("Add URLs to test context grounding in the preview")
with gr.Row():
preview_url1 = gr.Textbox(
label="URL 1",
placeholder="https://example.com/page1",
scale=1
)
preview_url2 = gr.Textbox(
label="URL 2",
placeholder="https://example.com/page2",
scale=1
)
with gr.Row():
preview_url3 = gr.Textbox(
label="URL 3",
placeholder="https://example.com/page3",
scale=1,
visible=False
)
preview_url4 = gr.Textbox(
label="URL 4",
placeholder="https://example.com/page4",
scale=1,
visible=False
)
# URL management for preview
with gr.Row():
preview_add_url_btn = gr.Button("+ Add URLs", size="sm")
preview_remove_url_btn = gr.Button("- Remove URLs", size="sm", visible=False)
preview_url_count = gr.State(2)
with gr.Row():
preview_send = gr.Button("Send", variant="primary")
preview_clear = gr.Button("Clear")
export_btn = gr.Button("Export Conversation", variant="secondary")
# Export functionality
export_file = gr.File(label="Download Conversation", visible=False)
# Configuration display - assign to global variable
config_display_comp = gr.Markdown("Configuration will appear here after preview generation.")
# Connect preview chat functionality
preview_send.click(
preview_chat_response,
inputs=[preview_msg, preview_chatbot, preview_config_state, preview_url1, preview_url2, preview_url3, preview_url4],
outputs=[preview_msg, preview_chatbot]
)
preview_msg.submit(
preview_chat_response,
inputs=[preview_msg, preview_chatbot, preview_config_state, preview_url1, preview_url2, preview_url3, preview_url4],
outputs=[preview_msg, preview_chatbot]
)
preview_clear.click(
clear_preview_chat,
outputs=[preview_msg, preview_chatbot]
)
export_btn.click(
export_preview_conversation,
inputs=[preview_chatbot],
outputs=[export_file]
)
# Connect preview URL management buttons
preview_add_url_btn.click(
add_chat_urls,
inputs=[preview_url_count],
outputs=[preview_url3, preview_url4, preview_add_url_btn, preview_remove_url_btn, preview_url_count]
)
preview_remove_url_btn.click(
remove_chat_urls,
inputs=[preview_url_count],
outputs=[preview_url3, preview_url4, preview_add_url_btn, preview_remove_url_btn, preview_url_count]
)
with gr.Tab("Support"):
create_support_docs()
# Connect cross-tab functionality after all components are defined
preview_btn.click(
on_preview_combined,
inputs=[name, description, system_prompt, enable_research_assistant, model, temperature, max_tokens, examples_text, enable_dynamic_urls, enable_vector_rag],
outputs=[preview_config_state, preview_status_comp, preview_chat_section_comp, config_display_comp]
)
if __name__ == "__main__":
# Check if running in local development with dev tunnels
if os.environ.get('CODESPACES') or 'devtunnels.ms' in os.environ.get('GRADIO_SERVER_NAME', ''):
demo.launch(share=True, allowed_paths=[], server_name="0.0.0.0")
else:
demo.launch(share=True) |