Spaces:
Running
Running
File size: 44,737 Bytes
df94830 7f85357 8b344c3 df94830 7f85357 df94830 f3a35a2 df94830 ffc2e6f 7f85357 df94830 f3a35a2 df94830 f3a35a2 df94830 f3a35a2 df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 7f85357 df94830 7f85357 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 8b344c3 df94830 8b344c3 df94830 7f85357 df94830 7f85357 df94830 7f85357 df94830 8b344c3 df94830 8b344c3 df94830 ffc2e6f 7f85357 df94830 7f85357 df94830 7f85357 df94830 8b344c3 df94830 7f85357 df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f 8b344c3 df94830 8b344c3 df94830 ffc2e6f 8b344c3 7f85357 df94830 e85d4e8 df94830 ffc2e6f df94830 e85d4e8 df94830 8b344c3 ffc2e6f 7f85357 df94830 7f85357 df94830 ffc2e6f 8b344c3 df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 ffc2e6f df94830 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 |
import gradio as gr
import json
import zipfile
import io
import os
from datetime import datetime
from dotenv import load_dotenv
import requests
from bs4 import BeautifulSoup
import tempfile
from pathlib import Path
# from scraping_service import get_grounding_context_crawl4ai, fetch_url_content_crawl4ai
# Temporary mock functions for testing
def get_grounding_context_crawl4ai(urls):
return "\n\n[URL content would be fetched here]\n\n"
def fetch_url_content_crawl4ai(url):
return f"[Content from {url} would be fetched here]"
# Import RAG components
try:
from rag_tool import RAGTool
HAS_RAG = True
except ImportError:
HAS_RAG = False
RAGTool = None
# Load environment variables from .env file
load_dotenv()
# Template for generated space app (based on mvp_simple.py)
SPACE_TEMPLATE = '''import gradio as gr
import os
import requests
import json
import asyncio
from crawl4ai import AsyncWebCrawler
# Configuration
SPACE_NAME = "{name}"
SPACE_DESCRIPTION = "{description}"
SYSTEM_PROMPT = """{system_prompt}"""
MODEL = "{model}"
GROUNDING_URLS = {grounding_urls}
ACCESS_CODE = "{access_code}"
ENABLE_DYNAMIC_URLS = {enable_dynamic_urls}
ENABLE_VECTOR_RAG = {enable_vector_rag}
RAG_DATA = {rag_data_json}
# Get API key from environment - customizable variable name
API_KEY = os.environ.get("{api_key_var}")
async def fetch_url_content_async(url, crawler):
"""Fetch and extract text content from a URL using Crawl4AI"""
try:
result = await crawler.arun(
url=url,
bypass_cache=True,
word_count_threshold=10,
excluded_tags=['script', 'style', 'nav', 'header', 'footer'],
remove_overlay_elements=True
)
if result.success:
content = result.markdown or result.cleaned_html or ""
# Truncate to ~4000 characters
if len(content) > 4000:
content = content[:4000] + "..."
return content
else:
return f"Error fetching {{url}}: Failed to retrieve content"
except Exception as e:
return f"Error fetching {{url}}: {{str(e)}}"
def fetch_url_content(url):
"""Synchronous wrapper for URL fetching"""
async def fetch():
async with AsyncWebCrawler(verbose=False) as crawler:
return await fetch_url_content_async(url, crawler)
try:
return asyncio.run(fetch())
except Exception as e:
return f"Error fetching {{url}}: {{str(e)}}"
# Global cache for URL content to avoid re-crawling in generated spaces
_url_content_cache = {{}}
def get_grounding_context():
"""Fetch context from grounding URLs with caching"""
if not GROUNDING_URLS:
return ""
# Create cache key from URLs
cache_key = tuple(sorted([url for url in GROUNDING_URLS if url and url.strip()]))
# Check cache first
if cache_key in _url_content_cache:
return _url_content_cache[cache_key]
context_parts = []
for i, url in enumerate(GROUNDING_URLS, 1):
if url.strip():
content = fetch_url_content(url.strip())
context_parts.append(f"Context from URL {{i}} ({{url}}):\\n{{content}}")
if context_parts:
result = "\\n\\n" + "\\n\\n".join(context_parts) + "\\n\\n"
else:
result = ""
# Cache the result
_url_content_cache[cache_key] = result
return result
import re
def extract_urls_from_text(text):
"""Extract URLs from text using regex"""
url_pattern = r'https?://[^\\s<>"{{}}|\\^`\\[\\]"]+'
return re.findall(url_pattern, text)
# Initialize RAG context if enabled
if ENABLE_VECTOR_RAG and RAG_DATA:
try:
import faiss
import numpy as np
import base64
class SimpleRAGContext:
def __init__(self, rag_data):
# Deserialize FAISS index
index_bytes = base64.b64decode(rag_data['index_base64'])
self.index = faiss.deserialize_index(index_bytes)
# Restore chunks and mappings
self.chunks = rag_data['chunks']
self.chunk_ids = rag_data['chunk_ids']
def get_context(self, query, max_chunks=3):
"""Get relevant context - simplified version"""
# In production, you'd compute query embedding here
# For now, return a simple message
return "\\n\\n[RAG context would be retrieved here based on similarity search]\\n\\n"
rag_context_provider = SimpleRAGContext(RAG_DATA)
except Exception as e:
print(f"Failed to initialize RAG: {{e}}")
rag_context_provider = None
else:
rag_context_provider = None
def generate_response(message, history):
"""Generate response using OpenRouter API"""
if not API_KEY:
return "Please set your {api_key_var} in the Space settings."
# Get grounding context
grounding_context = get_grounding_context()
# Add RAG context if available
if ENABLE_VECTOR_RAG and rag_context_provider:
rag_context = rag_context_provider.get_context(message)
if rag_context:
grounding_context += rag_context
# If dynamic URLs are enabled, check message for URLs to fetch
if ENABLE_DYNAMIC_URLS:
urls_in_message = extract_urls_from_text(message)
if urls_in_message:
# Fetch content from URLs mentioned in the message
dynamic_context_parts = []
for url in urls_in_message[:3]: # Limit to 3 URLs per message
content = fetch_url_content(url)
dynamic_context_parts.append(f"\\n\\nDynamic context from {{url}}:\\n{{content}}")
if dynamic_context_parts:
grounding_context += "\\n".join(dynamic_context_parts)
# Build enhanced system prompt with grounding context
enhanced_system_prompt = SYSTEM_PROMPT + grounding_context
# Build messages array for the API
messages = [{{"role": "system", "content": enhanced_system_prompt}}]
# Add conversation history - compatible with Gradio 5.x format
for chat in history:
if isinstance(chat, dict):
# New format: {{"role": "user", "content": "..."}} or {{"role": "assistant", "content": "..."}}
messages.append(chat)
else:
# Legacy format: ("user msg", "bot msg")
user_msg, bot_msg = chat
messages.append({{"role": "user", "content": user_msg}})
if bot_msg:
messages.append({{"role": "assistant", "content": bot_msg}})
# Add current message
messages.append({{"role": "user", "content": message}})
# Make API request
try:
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={{
"Authorization": f"Bearer {{API_KEY}}",
"Content-Type": "application/json"
}},
json={{
"model": MODEL,
"messages": messages,
"temperature": {temperature},
"max_tokens": {max_tokens}
}}
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"Error: {{response.status_code}} - {{response.text}}"
except Exception as e:
return f"Error: {{str(e)}}"
# Access code verification
access_granted = gr.State(False)
def verify_access_code(code):
\"\"\"Verify the access code\"\"\"
if not ACCESS_CODE:
return gr.update(visible=False), gr.update(visible=True), True
if code == ACCESS_CODE:
return gr.update(visible=False), gr.update(visible=True), True
else:
return gr.update(visible=True, value="β Incorrect access code. Please try again."), gr.update(visible=False), False
def protected_generate_response(message, history, access_state):
\"\"\"Protected response function that checks access\"\"\"
if not access_state:
return "Please enter the access code to continue."
return generate_response(message, history)
# Create interface with access code protection
with gr.Blocks(title=SPACE_NAME) as demo:
gr.Markdown(f"# {{SPACE_NAME}}")
gr.Markdown(SPACE_DESCRIPTION)
# Access code section (shown only if ACCESS_CODE is set)
with gr.Column(visible=bool(ACCESS_CODE)) as access_section:
gr.Markdown("### π Access Required")
gr.Markdown("Please enter the access code provided by your instructor:")
access_input = gr.Textbox(
label="Access Code",
placeholder="Enter access code...",
type="password"
)
access_btn = gr.Button("Submit", variant="primary")
access_error = gr.Markdown(visible=False)
# Main chat interface (hidden until access granted)
with gr.Column(visible=not bool(ACCESS_CODE)) as chat_section:
chat_interface = gr.ChatInterface(
fn=lambda msg, hist: protected_generate_response(msg, hist, access_granted.value),
title="", # Title already shown above
description="", # Description already shown above
examples={examples}
)
# Connect access verification
if ACCESS_CODE:
access_btn.click(
verify_access_code,
inputs=[access_input],
outputs=[access_error, chat_section, access_granted]
)
access_input.submit(
verify_access_code,
inputs=[access_input],
outputs=[access_error, chat_section, access_granted]
)
if __name__ == "__main__":
demo.launch()
'''
# Available models
MODELS = [
"google/gemma-3-27b-it",
"google/gemini-2.0-flash-001",
"mistralai/mistral-medium",
"openai/gpt-4o-nano",
"anthropic/claude-3.5-haiku"
]
def fetch_url_content(url):
"""Fetch and extract text content from a URL"""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text content
text = soup.get_text()
# Clean up whitespace
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
# Truncate to ~4000 characters
if len(text) > 4000:
text = text[:4000] + "..."
return text
except Exception as e:
return f"Error fetching {url}: {str(e)}"
def get_grounding_context(urls):
"""Fetch context from grounding URLs"""
if not urls:
return ""
context_parts = []
for i, url in enumerate(urls, 1):
if url and url.strip():
content = fetch_url_content(url.strip())
context_parts.append(f"Context from URL {i} ({url}):\n{content}")
if context_parts:
return "\n\n" + "\n\n".join(context_parts) + "\n\n"
return ""
def create_readme(config):
"""Generate README with deployment instructions"""
return f"""---
title: {config['name']}
emoji: π€
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 4.32.0
app_file: app.py
pinned: false
---
# {config['name']}
{config['description']}
## Quick Deploy to HuggingFace Spaces
### Step 1: Create the Space
1. Go to https://huggingface.co/spaces
2. Click "Create new Space"
3. Choose a name for your Space
4. Select **Gradio** as the SDK
5. Set visibility (Public/Private)
6. Click "Create Space"
### Step 2: Upload Files
1. In your new Space, click "Files" tab
2. Upload these files from the zip:
- `app.py`
- `requirements.txt`
3. Wait for "Building" to complete
### Step 3: Add API Key
1. Go to Settings (gear icon)
2. Click "Variables and secrets"
3. Click "New secret"
4. Name: `{config['api_key_var']}`
5. Value: Your OpenRouter API key
6. Click "Add"
{f'''### Step 4: Configure Access Control (Optional)
Your Space is configured with access code protection. Students will need to enter the access code to use the chatbot.
**Access Code**: `{config['access_code']}`
To disable access protection:
1. Edit `app.py` in your Space
2. Change `ACCESS_CODE = "{config['access_code']}"` to `ACCESS_CODE = ""`
3. The Space will rebuild automatically
''' if config['access_code'] else ''}
### Step {4 if not config['access_code'] else 5}: Get Your API Key
1. Go to https://openrouter.ai/keys
2. Sign up/login if needed
3. Click "Create Key"
4. Copy the key (starts with `sk-or-`)
### Step {5 if not config['access_code'] else 6}: Test Your Space
- Go back to "App" tab
- Your Space should be running!
- Try the example prompts or ask a question
## Configuration
- **Model**: {config['model']}
- **Temperature**: {config['temperature']}
- **Max Tokens**: {config['max_tokens']}
- **API Key Variable**: {config['api_key_var']}"""
# Add optional configuration items
if config['access_code']:
readme_content += f"""
- **Access Code**: {config['access_code']} (Students need this to access the chatbot)"""
if config.get('enable_dynamic_urls'):
readme_content += """
- **Dynamic URL Fetching**: Enabled (Assistant can fetch URLs mentioned in conversations)"""
readme_content += f"""
## Customization
To modify your Space:
1. Edit `app.py` in your Space
2. Update configuration variables at the top
3. Changes deploy automatically
## Troubleshooting
- **"Please set your {config['api_key_var']}"**: Add the secret in Space settings
- **Error 401**: Invalid API key or no credits
- **Error 429**: Rate limit - wait and try again
- **Build failed**: Check requirements.txt formatting
## More Help
- HuggingFace Spaces: https://huggingface.co/docs/hub/spaces
- OpenRouter Docs: https://openrouter.ai/docs
- Gradio Docs: https://gradio.app/docs
---
Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} with Chat U/I Helper
"""
return readme_content
def create_requirements(enable_vector_rag=False):
"""Generate requirements.txt"""
base_requirements = "gradio==4.44.1\nrequests==2.32.3\ncrawl4ai==0.4.245"
if enable_vector_rag:
base_requirements += "\nfaiss-cpu==1.7.4\nnumpy==1.24.3"
return base_requirements
def generate_zip(name, description, role_purpose, intended_audience, key_tasks, additional_context, model, api_key_var, temperature, max_tokens, examples_text, access_code="", enable_dynamic_urls=False, url1="", url2="", url3="", url4="", enable_vector_rag=False, rag_data=None):
"""Generate deployable zip file"""
# Process examples
if examples_text and examples_text.strip():
examples_list = [ex.strip() for ex in examples_text.split('\n') if ex.strip()]
examples_json = json.dumps(examples_list)
else:
examples_json = json.dumps([
"Hello! How can you help me?",
"Tell me something interesting",
"What can you do?"
])
# Process grounding URLs
grounding_urls = []
for url in [url1, url2, url3, url4]:
if url and url.strip():
grounding_urls.append(url.strip())
# Combine system prompt components
system_prompt_parts = []
if role_purpose and role_purpose.strip():
system_prompt_parts.append(role_purpose.strip())
if intended_audience and intended_audience.strip():
system_prompt_parts.append(intended_audience.strip())
if key_tasks and key_tasks.strip():
system_prompt_parts.append(key_tasks.strip())
if additional_context and additional_context.strip():
system_prompt_parts.append(additional_context.strip())
combined_system_prompt = " ".join(system_prompt_parts)
# Create config
config = {
'name': name,
'description': description,
'system_prompt': combined_system_prompt,
'model': model,
'api_key_var': api_key_var,
'temperature': temperature,
'max_tokens': int(max_tokens),
'examples': examples_json,
'grounding_urls': json.dumps(grounding_urls),
'access_code': access_code or "",
'enable_dynamic_urls': enable_dynamic_urls,
'enable_vector_rag': enable_vector_rag,
'rag_data_json': json.dumps(rag_data) if rag_data else 'null'
}
# Generate files
app_content = SPACE_TEMPLATE.format(**config)
readme_content = create_readme(config)
requirements_content = create_requirements(enable_vector_rag)
# Create zip file with clean naming
filename = f"{name.lower().replace(' ', '_').replace('-', '_')}.zip"
# Create zip in memory and save to disk
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
zip_file.writestr('app.py', app_content)
zip_file.writestr('requirements.txt', requirements_content)
zip_file.writestr('README.md', readme_content)
zip_file.writestr('config.json', json.dumps(config, indent=2))
# Write zip to file
zip_buffer.seek(0)
with open(filename, 'wb') as f:
f.write(zip_buffer.getvalue())
return filename
# Define callback functions outside the interface
def toggle_rag_section(enable_rag):
"""Toggle visibility of RAG section"""
return gr.update(visible=enable_rag)
def process_documents(files, current_rag_tool):
"""Process uploaded documents"""
if not files:
return "Please upload files first", current_rag_tool
if not HAS_RAG:
return "RAG functionality not available. Please install required dependencies.", current_rag_tool
try:
# Initialize RAG tool if not exists
if not current_rag_tool:
current_rag_tool = RAGTool()
# Process files
result = current_rag_tool.process_uploaded_files(files)
if result['success']:
# Create status message
status_parts = [f"β
{result['message']}"]
# Add file summary
if result['summary']['files_processed']:
status_parts.append("\n**Processed files:**")
for file_info in result['summary']['files_processed']:
status_parts.append(f"- {file_info['name']} ({file_info['chunks']} chunks)")
# Add errors if any
if result.get('errors'):
status_parts.append("\n**Errors:**")
for error in result['errors']:
status_parts.append(f"- {error['file']}: {error['error']}")
# Add index stats
if result.get('index_stats'):
stats = result['index_stats']
status_parts.append(f"\n**Index stats:** {stats['total_chunks']} chunks, {stats['dimension']}D embeddings")
return "\n".join(status_parts), current_rag_tool
else:
return f"β {result['message']}", current_rag_tool
except Exception as e:
return f"β Error processing documents: {str(e)}", current_rag_tool
def on_generate(name, description, role_purpose, intended_audience, key_tasks, additional_context, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_tool_state):
if not name or not name.strip():
return gr.update(value="Error: Please provide a Space Title", visible=True), gr.update(visible=False)
if not role_purpose or not role_purpose.strip():
return gr.update(value="Error: Please provide a Role and Purpose for the assistant", visible=True), gr.update(visible=False)
try:
# Get RAG data if enabled
rag_data = None
if enable_vector_rag and rag_tool_state:
rag_data = rag_tool_state.get_serialized_data()
filename = generate_zip(name, description, role_purpose, intended_audience, key_tasks, additional_context, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_data)
success_msg = f"""**Deployment package ready!**
**File**: `{filename}`
**What's included:**
- `app.py` - Ready-to-deploy chat interface
- `requirements.txt` - Dependencies
- `README.md` - Step-by-step deployment guide
- `config.json` - Configuration backup
**Next steps:**
1. Download the zip file below
2. Follow the README instructions to deploy on HuggingFace Spaces
3. Set your `{api_key_var}` secret in Space settings
**Your Space will be live in minutes!**"""
return gr.update(value=success_msg, visible=True), gr.update(value=filename, visible=True)
except Exception as e:
return gr.update(value=f"Error: {str(e)}", visible=True), gr.update(visible=False)
# Global cache for URL content to avoid re-crawling
url_content_cache = {}
def get_cached_grounding_context(urls):
"""Get grounding context with caching to avoid re-crawling same URLs"""
if not urls:
return ""
# Filter valid URLs
valid_urls = [url for url in urls if url and url.strip()]
if not valid_urls:
return ""
# Create cache key from sorted URLs
cache_key = tuple(sorted(valid_urls))
# Check if we already have this content cached
if cache_key in url_content_cache:
return url_content_cache[cache_key]
# If not cached, fetch using Crawl4AI
grounding_context = get_grounding_context_crawl4ai(valid_urls)
# Cache the result
url_content_cache[cache_key] = grounding_context
return grounding_context
def respond_with_cache_update(message, chat_history, url1="", url2="", url3="", url4=""):
"""Wrapper that updates cache status after responding"""
msg, history = respond(message, chat_history, url1, url2, url3, url4)
cache_status = get_cache_status()
return msg, history, cache_status
def respond(message, chat_history, url1="", url2="", url3="", url4=""):
# Make actual API request to OpenRouter
import os
import requests
# Get API key from environment
api_key = os.environ.get("OPENROUTER_API_KEY")
if not api_key:
response = "Please set your OPENROUTER_API_KEY in the Space settings to use the chat support."
chat_history.append([message, response])
return "", chat_history
# Get grounding context from URLs using cached approach
grounding_urls = [url1, url2, url3, url4]
grounding_context = get_cached_grounding_context(grounding_urls)
# Build enhanced system prompt with grounding context
base_system_prompt = """You are an expert assistant specializing in Gradio configurations for HuggingFace Spaces. You have deep knowledge of:
- Gradio interface components and layouts
- HuggingFace Spaces configuration (YAML frontmatter, secrets, environment variables)
- Deployment best practices for Gradio apps on HuggingFace
- Space settings, SDK versions, and hardware requirements
- Troubleshooting common Gradio and HuggingFace Spaces issues
- Integration with various APIs and models through Gradio interfaces
Provide specific, technical guidance focused on Gradio implementation details and HuggingFace Spaces deployment. Include code examples when relevant. Keep responses concise and actionable."""
enhanced_system_prompt = base_system_prompt + grounding_context
# Build conversation history for API
messages = [{
"role": "system",
"content": enhanced_system_prompt
}]
# Add conversation history - Support both new messages format and legacy tuple format
for chat in chat_history:
if isinstance(chat, dict):
# New format: {"role": "user", "content": "..."}
messages.append(chat)
elif isinstance(chat, (list, tuple)) and len(chat) >= 2:
# Legacy format: ("user msg", "bot msg")
user_msg, assistant_msg = chat[0], chat[1]
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
try:
# Make API request to OpenRouter
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
},
json={
"model": "google/gemini-2.0-flash-001",
"messages": messages,
"temperature": 0.7,
"max_tokens": 500
}
)
if response.status_code == 200:
assistant_response = response.json()['choices'][0]['message']['content']
else:
assistant_response = f"Error: {response.status_code} - {response.text}"
except Exception as e:
assistant_response = f"Error: {str(e)}"
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": assistant_response})
return "", chat_history
def clear_chat():
return "", []
def clear_url_cache():
"""Clear the URL content cache"""
global url_content_cache
url_content_cache.clear()
return "β
URL cache cleared. Next request will re-fetch content."
def get_cache_status():
"""Get current cache status"""
if not url_content_cache:
return "π No URLs cached"
return f"πΎ {len(url_content_cache)} URL set(s) cached"
def add_urls(count):
"""Show additional URL fields"""
if count == 2:
return (gr.update(visible=True), gr.update(visible=False),
gr.update(value="+ Add URLs"), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=True), gr.update(visible=True),
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def remove_urls(count):
"""Hide URL fields"""
if count == 4:
return (gr.update(visible=True), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def add_chat_urls(count):
"""Show additional chat URL fields"""
if count == 2:
return (gr.update(visible=True), gr.update(visible=False),
gr.update(value="+ Add URLs"), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=True), gr.update(visible=True),
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def remove_chat_urls(count):
"""Hide chat URL fields"""
if count == 4:
return (gr.update(visible=True), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def update_template_fields(choice):
"""Update assistant configuration fields based on template choice"""
if choice == "Use the research assistant template":
return (
gr.update(value="You are a research assistant that provides link-grounded information through Crawl4AI web fetching. Use MLA documentation for parenthetical citations and bibliographic entries."),
gr.update(value="This assistant is designed for students and researchers conducting academic inquiry."),
gr.update(value="Your main responsibilities include: analyzing academic sources, fact-checking claims with evidence, providing properly cited research summaries, and helping users navigate scholarly information."),
gr.update(value="Ground all responses in provided URL contexts and any additional URLs you're instructed to fetch. Never rely on memory for factual claims."),
gr.update(value=True) # Enable dynamic URL fetching for research template
)
else: # Custom assistant from scratch
return (
gr.update(value=""),
gr.update(value=""),
gr.update(value=""),
gr.update(value=""),
gr.update(value=False) # Disable dynamic URL fetching for custom template
)
# Create Gradio interface with proper tab structure
with gr.Blocks(title="Chat U/I Helper") as demo:
with gr.Tabs():
with gr.Tab("Spaces Configuration"):
gr.Markdown("# Spaces Configuration")
gr.Markdown("Convert custom assistants from HuggingChat into chat interfaces with HuggingFace Spaces. Configure and download everything needed to deploy a simple HF space using Gradio.")
with gr.Column():
name = gr.Textbox(
label="Space Title",
placeholder="My Course Helper",
value="My Custom Space"
)
description = gr.Textbox(
label="Space Description",
placeholder="A customizable AI chat interface for...",
lines=2,
value="An AI research assistant tailored for academic inquiry and scholarly dialogue"
)
model = gr.Dropdown(
label="Model",
choices=MODELS,
value=MODELS[0],
info="Choose based on the context and purposes of your space"
)
api_key_var = gr.Textbox(
label="API Key Variable Name",
value="OPENROUTER_API_KEY",
info="Name for the secret in HuggingFace Space settings"
)
access_code = gr.Textbox(
label="Access Code (Optional)",
placeholder="Leave empty for public access, or enter code for student access",
info="If set, students must enter this code to access the chatbot",
type="password"
)
with gr.Accordion("Assistant Configuration", open=True):
gr.Markdown("### Configure your assistant's behavior and capabilities")
template_choice = gr.Radio(
label="How would you like to get started?",
choices=[
"Use the research assistant template",
"Create a custom assistant from scratch"
],
value="Use the research assistant template",
info="Choose a starting point for your assistant configuration"
)
role_purpose = gr.Textbox(
label="Role and Purpose",
placeholder="You are a research assistant that...",
lines=2,
value="You are a research assistant that provides link-grounded information through Crawl4AI web fetching. Use MLA documentation for parenthetical citations and bibliographic entries.",
info="Define what the assistant is and its primary function"
)
intended_audience = gr.Textbox(
label="Intended Audience",
placeholder="This assistant is designed for undergraduate students...",
lines=2,
value="This assistant is designed for students and researchers conducting academic inquiry.",
info="Specify who will be using this assistant and their context"
)
key_tasks = gr.Textbox(
label="Key Tasks",
placeholder="Your main responsibilities include...",
lines=3,
value="Your main responsibilities include: analyzing academic sources, fact-checking claims with evidence, providing properly cited research summaries, and helping users navigate scholarly information.",
info="List the specific tasks and capabilities the assistant should focus on"
)
additional_context = gr.Textbox(
label="Additional Context",
placeholder="Remember to always...",
lines=2,
value="Ground all responses in provided URL contexts and any additional URLs you're instructed to fetch. Never rely on memory for factual claims.",
info="Any additional instructions, constraints, or behavioral guidelines"
)
gr.Markdown("### Tool Settings")
enable_dynamic_urls = gr.Checkbox(
label="Enable Dynamic URL Fetching",
value=False,
info="Allow the assistant to fetch additional URLs mentioned in conversations (uses Crawl4AI)"
)
enable_vector_rag = gr.Checkbox(
label="Enable Document RAG",
value=False,
info="Upload documents for context-aware responses (PDF, DOCX, TXT, MD)",
visible=HAS_RAG
)
with gr.Column(visible=False) as rag_section:
gr.Markdown("### Document Upload")
file_upload = gr.File(
label="Upload Documents",
file_types=[".pdf", ".docx", ".txt", ".md"],
file_count="multiple",
type="filepath"
)
process_btn = gr.Button("Process Documents", variant="secondary")
rag_status = gr.Markdown()
# State to store RAG tool
rag_tool_state = gr.State(None)
examples_text = gr.Textbox(
label="Example Prompts (one per line)",
placeholder="Can you analyze this research paper: https://example.com/paper.pdf\nWhat are the latest findings on climate change adaptation?\nHelp me fact-check claims about renewable energy efficiency",
lines=3,
info="These will appear as clickable examples in the chat interface"
)
with gr.Accordion("URL Grounding (Optional)", open=False):
gr.Markdown("Add URLs to provide context. Content will be fetched and added to the system prompt.")
# Initial URL fields
url1 = gr.Textbox(
label="URL 1",
placeholder="https://example.com/page1",
info="First URL for context grounding"
)
url2 = gr.Textbox(
label="URL 2",
placeholder="https://example.com/page2",
info="Second URL for context grounding"
)
# Additional URL fields (initially hidden)
url3 = gr.Textbox(
label="URL 3",
placeholder="https://example.com/page3",
info="Third URL for context grounding",
visible=False
)
url4 = gr.Textbox(
label="URL 4",
placeholder="https://example.com/page4",
info="Fourth URL for context grounding",
visible=False
)
# URL management buttons
with gr.Row():
add_url_btn = gr.Button("+ Add URLs", size="sm")
remove_url_btn = gr.Button("- Remove URLs", size="sm", visible=False)
url_count = gr.State(2) # Track number of visible URLs
with gr.Row():
temperature = gr.Slider(
label="Temperature",
minimum=0,
maximum=2,
value=0.7,
step=0.1,
info="Higher = more creative, Lower = more focused"
)
max_tokens = gr.Slider(
label="Max Response Tokens",
minimum=50,
maximum=4096,
value=500,
step=50
)
generate_btn = gr.Button("Generate Deployment Package", variant="primary")
status = gr.Markdown(visible=False)
download_file = gr.File(label="Download your zip package", visible=False)
# Connect the template choice radio button
template_choice.change(
update_template_fields,
inputs=[template_choice],
outputs=[role_purpose, intended_audience, key_tasks, additional_context, enable_dynamic_urls]
)
# Connect the URL management buttons
add_url_btn.click(
add_urls,
inputs=[url_count],
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count]
)
remove_url_btn.click(
remove_urls,
inputs=[url_count],
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count]
)
# Connect RAG functionality
enable_vector_rag.change(
toggle_rag_section,
inputs=[enable_vector_rag],
outputs=[rag_section]
)
process_btn.click(
process_documents,
inputs=[file_upload, rag_tool_state],
outputs=[rag_status, rag_tool_state]
)
# Connect the generate button
generate_btn.click(
on_generate,
inputs=[name, description, role_purpose, intended_audience, key_tasks, additional_context, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_tool_state],
outputs=[status, download_file]
)
with gr.Tab("Chat Support"):
gr.Markdown("# Chat Support")
gr.Markdown("Get personalized guidance on configuring chat assistants as HuggingFace Spaces for educational & research purposes.")
# Meta chat interface
with gr.Column():
chatbot = gr.Chatbot(
value=[],
label="Chat Support Assistant",
height=400
)
msg = gr.Textbox(
label="Ask about configuring chat UIs for courses, research, or custom HuggingFace Spaces",
placeholder="How can I configure a chat UI for my senior seminar?",
lines=2
)
with gr.Accordion("URL Grounding (Optional)", open=False):
gr.Markdown("Add URLs to provide additional context for more informed responses")
chat_url1 = gr.Textbox(
label="URL 1",
value="https://huggingface.co/docs/hub/en/spaces-overview",
info="HuggingFace Spaces Overview"
)
chat_url2 = gr.Textbox(
label="URL 2",
value="",
placeholder="https://example.com/page2",
info="Additional context URL"
)
# Additional URL fields for chat (initially hidden)
chat_url3 = gr.Textbox(
label="URL 3",
placeholder="https://example.com/page3",
info="Additional context URL",
visible=False
)
chat_url4 = gr.Textbox(
label="URL 4",
placeholder="https://example.com/page4",
info="Additional context URL",
visible=False
)
# Chat URL management buttons
with gr.Row():
add_chat_url_btn = gr.Button("+ Add URLs", size="sm")
remove_chat_url_btn = gr.Button("- Remove URLs", size="sm", visible=False)
chat_url_count = gr.State(2) # Track number of visible chat URLs
# Cache controls
with gr.Row():
cache_status = gr.Markdown("π No URLs cached")
clear_cache_btn = gr.Button("Clear URL Cache", size="sm")
with gr.Row():
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
gr.Examples(
examples=[
"How do I set up a course assistant?",
"Which model should I use?",
"What's a good system prompt?",
"Why Gradio? What is it?",
"How do I customize the chat interface?",
"Can you help me troubleshoot?",
],
inputs=msg
)
# Connect the chat URL management buttons
add_chat_url_btn.click(
add_chat_urls,
inputs=[chat_url_count],
outputs=[chat_url3, chat_url4, add_chat_url_btn, remove_chat_url_btn, chat_url_count]
)
remove_chat_url_btn.click(
remove_chat_urls,
inputs=[chat_url_count],
outputs=[chat_url3, chat_url4, add_chat_url_btn, remove_chat_url_btn, chat_url_count]
)
# Connect cache controls
clear_cache_btn.click(clear_url_cache, outputs=[cache_status])
# Connect the chat functionality
submit.click(respond_with_cache_update, [msg, chatbot, chat_url1, chat_url2, chat_url3, chat_url4], [msg, chatbot, cache_status])
msg.submit(respond_with_cache_update, [msg, chatbot, chat_url1, chat_url2, chat_url3, chat_url4], [msg, chatbot, cache_status])
clear.click(clear_chat, outputs=[msg, chatbot])
if __name__ == "__main__":
demo.launch(share=True) |