File size: 8,355 Bytes
7f85357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import numpy as np
import pickle
import base64
from typing import List, Dict, Any, Tuple, Optional
import json
from dataclasses import dataclass

try:
    from sentence_transformers import SentenceTransformer
    HAS_SENTENCE_TRANSFORMERS = True
except ImportError:
    HAS_SENTENCE_TRANSFORMERS = False

try:
    import faiss
    HAS_FAISS = True
except ImportError:
    HAS_FAISS = False


@dataclass
class SearchResult:
    chunk_id: str
    text: str
    score: float
    metadata: Dict[str, Any]


class VectorStore:
    def __init__(self, embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2"):
        self.embedding_model_name = embedding_model
        self.embedding_model = None
        self.index = None
        self.chunks = {}  # chunk_id -> chunk data
        self.chunk_ids = []  # Ordered list for FAISS index mapping
        self.dimension = 384  # Default for all-MiniLM-L6-v2
        
        if HAS_SENTENCE_TRANSFORMERS:
            self._initialize_model()
    
    def _initialize_model(self):
        """Initialize the embedding model"""
        if not HAS_SENTENCE_TRANSFORMERS:
            raise ImportError("sentence-transformers not installed")
        
        self.embedding_model = SentenceTransformer(self.embedding_model_name)
        # Update dimension based on model
        self.dimension = self.embedding_model.get_sentence_embedding_dimension()
    
    def create_embeddings(self, texts: List[str], batch_size: int = 32) -> np.ndarray:
        """Create embeddings for a list of texts"""
        if not self.embedding_model:
            self._initialize_model()
        
        # Process in batches for efficiency
        embeddings = []
        
        for i in range(0, len(texts), batch_size):
            batch = texts[i:i + batch_size]
            batch_embeddings = self.embedding_model.encode(
                batch,
                convert_to_numpy=True,
                show_progress_bar=False
            )
            embeddings.append(batch_embeddings)
        
        return np.vstack(embeddings) if embeddings else np.array([])
    
    def build_index(self, chunks: List[Dict[str, Any]], show_progress: bool = True):
        """Build FAISS index from chunks"""
        if not HAS_FAISS:
            raise ImportError("faiss-cpu not installed")
        
        # Extract texts and build embeddings
        texts = [chunk['text'] for chunk in chunks]
        
        if show_progress:
            print(f"Creating embeddings for {len(texts)} chunks...")
        
        embeddings = self.create_embeddings(texts)
        
        # Build FAISS index
        if show_progress:
            print("Building FAISS index...")
        
        # Use IndexFlatIP for inner product (cosine similarity with normalized vectors)
        self.index = faiss.IndexFlatIP(self.dimension)
        
        # Normalize embeddings for cosine similarity
        faiss.normalize_L2(embeddings)
        
        # Add to index
        self.index.add(embeddings)
        
        # Store chunks and maintain mapping
        self.chunks = {}
        self.chunk_ids = []
        
        for chunk in chunks:
            chunk_id = chunk['chunk_id']
            self.chunks[chunk_id] = chunk
            self.chunk_ids.append(chunk_id)
        
        if show_progress:
            print(f"Index built with {len(chunks)} chunks")
    
    def search(self, query: str, top_k: int = 5, score_threshold: float = 0.3) -> List[SearchResult]:
        """Search for similar chunks"""
        if not self.index or not self.chunks:
            return []
        
        # Create query embedding
        query_embedding = self.create_embeddings([query])
        
        # Normalize for cosine similarity
        faiss.normalize_L2(query_embedding)
        
        # Search
        scores, indices = self.index.search(query_embedding, min(top_k, len(self.chunks)))
        
        # Convert to results
        results = []
        
        for score, idx in zip(scores[0], indices[0]):
            if idx < 0 or score < score_threshold:
                continue
            
            chunk_id = self.chunk_ids[idx]
            chunk = self.chunks[chunk_id]
            
            result = SearchResult(
                chunk_id=chunk_id,
                text=chunk['text'],
                score=float(score),
                metadata=chunk.get('metadata', {})
            )
            results.append(result)
        
        return results
    
    def serialize(self) -> Dict[str, Any]:
        """Serialize the vector store for deployment"""
        if not self.index:
            raise ValueError("No index to serialize")
        
        # Serialize FAISS index
        index_bytes = faiss.serialize_index(self.index)
        index_base64 = base64.b64encode(index_bytes).decode('utf-8')
        
        return {
            'index_base64': index_base64,
            'chunks': self.chunks,
            'chunk_ids': self.chunk_ids,
            'dimension': self.dimension,
            'model_name': self.embedding_model_name
        }
    
    @classmethod
    def deserialize(cls, data: Dict[str, Any]) -> 'VectorStore':
        """Deserialize a vector store from deployment data"""
        if not HAS_FAISS:
            raise ImportError("faiss-cpu not installed")
        
        store = cls(embedding_model=data['model_name'])
        
        # Deserialize FAISS index
        index_bytes = base64.b64decode(data['index_base64'])
        store.index = faiss.deserialize_index(index_bytes)
        
        # Restore chunks and mappings
        store.chunks = data['chunks']
        store.chunk_ids = data['chunk_ids']
        store.dimension = data['dimension']
        
        return store
    
    def get_stats(self) -> Dict[str, Any]:
        """Get statistics about the vector store"""
        return {
            'total_chunks': len(self.chunks),
            'index_size': self.index.ntotal if self.index else 0,
            'dimension': self.dimension,
            'model': self.embedding_model_name
        }


class LightweightVectorStore:
    """Lightweight version for deployed spaces without embedding model"""
    
    def __init__(self, serialized_data: Dict[str, Any]):
        if not HAS_FAISS:
            raise ImportError("faiss-cpu not installed")
        
        # Deserialize FAISS index
        index_bytes = base64.b64decode(serialized_data['index_base64'])
        self.index = faiss.deserialize_index(index_bytes)
        
        # Restore chunks and mappings
        self.chunks = serialized_data['chunks']
        self.chunk_ids = serialized_data['chunk_ids']
        self.dimension = serialized_data['dimension']
        
        # For query embedding, we'll need to include pre-computed embeddings
        # or use a lightweight embedding service
        self.query_embeddings_cache = serialized_data.get('query_embeddings_cache', {})
    
    def search_with_embedding(self, query_embedding: np.ndarray, top_k: int = 5, score_threshold: float = 0.3) -> List[SearchResult]:
        """Search using pre-computed query embedding"""
        if not self.index or not self.chunks:
            return []
        
        # Normalize for cosine similarity
        faiss.normalize_L2(query_embedding)
        
        # Search
        scores, indices = self.index.search(query_embedding, min(top_k, len(self.chunks)))
        
        # Convert to results
        results = []
        
        for score, idx in zip(scores[0], indices[0]):
            if idx < 0 or score < score_threshold:
                continue
            
            chunk_id = self.chunk_ids[idx]
            chunk = self.chunks[chunk_id]
            
            result = SearchResult(
                chunk_id=chunk_id,
                text=chunk['text'],
                score=float(score),
                metadata=chunk.get('metadata', {})
            )
            results.append(result)
        
        return results


# Utility functions
def estimate_index_size(num_chunks: int, dimension: int = 384) -> float:
    """Estimate the size of the index in MB"""
    # Rough estimation: 4 bytes per float * dimension * num_chunks
    bytes_size = 4 * dimension * num_chunks
    # Add overhead for index structure and metadata
    overhead = 1.2
    return (bytes_size * overhead) / (1024 * 1024)