Spaces:
Running
Running
| import gradio as gr | |
| import json | |
| import zipfile | |
| import io | |
| import os | |
| from datetime import datetime | |
| from dotenv import load_dotenv | |
| import requests | |
| from bs4 import BeautifulSoup | |
| # Load environment variables from .env file | |
| load_dotenv() | |
| # Template for generated space app (based on mvp_simple.py) | |
| SPACE_TEMPLATE = '''import gradio as gr | |
| import os | |
| import requests | |
| import json | |
| from bs4 import BeautifulSoup | |
| # Configuration | |
| SPACE_NAME = "{name}" | |
| SPACE_DESCRIPTION = "{description}" | |
| SYSTEM_PROMPT = """{system_prompt}""" | |
| MODEL = "{model}" | |
| GROUNDING_URLS = {grounding_urls} | |
| # Get API key from environment - customizable variable name | |
| API_KEY = os.environ.get("{api_key_var}") | |
| def fetch_url_content(url): | |
| """Fetch and extract text content from a URL""" | |
| try: | |
| response = requests.get(url, timeout=10) | |
| response.raise_for_status() | |
| soup = BeautifulSoup(response.content, 'html.parser') | |
| # Remove script and style elements | |
| for script in soup(["script", "style"]): | |
| script.decompose() | |
| # Get text content | |
| text = soup.get_text() | |
| # Clean up whitespace | |
| lines = (line.strip() for line in text.splitlines()) | |
| chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
| text = ' '.join(chunk for chunk in chunks if chunk) | |
| # Truncate to ~4000 characters | |
| if len(text) > 4000: | |
| text = text[:4000] + "..." | |
| return text | |
| except Exception as e: | |
| return f"Error fetching {{url}}: {{str(e)}}" | |
| def get_grounding_context(): | |
| """Fetch context from grounding URLs""" | |
| if not GROUNDING_URLS: | |
| return "" | |
| context_parts = [] | |
| for i, url in enumerate(GROUNDING_URLS, 1): | |
| if url.strip(): | |
| content = fetch_url_content(url.strip()) | |
| context_parts.append(f"Context from URL {{i}} ({{url}}):\\n{{content}}") | |
| if context_parts: | |
| return "\\n\\n" + "\\n\\n".join(context_parts) + "\\n\\n" | |
| return "" | |
| def generate_response(message, history): | |
| """Generate response using OpenRouter API""" | |
| if not API_KEY: | |
| return "Please set your {api_key_var} in the Space settings." | |
| # Get grounding context | |
| grounding_context = get_grounding_context() | |
| # Build enhanced system prompt with grounding context | |
| enhanced_system_prompt = SYSTEM_PROMPT + grounding_context | |
| # Build messages array for the API | |
| messages = [{{"role": "system", "content": enhanced_system_prompt}}] | |
| # Add conversation history - compatible with Gradio 5.x format | |
| for chat in history: | |
| if isinstance(chat, dict): | |
| # New format: {{"role": "user", "content": "..."}} or {{"role": "assistant", "content": "..."}} | |
| messages.append(chat) | |
| else: | |
| # Legacy format: ("user msg", "bot msg") | |
| user_msg, bot_msg = chat | |
| messages.append({{"role": "user", "content": user_msg}}) | |
| if bot_msg: | |
| messages.append({{"role": "assistant", "content": bot_msg}}) | |
| # Add current message | |
| messages.append({{"role": "user", "content": message}}) | |
| # Make API request | |
| try: | |
| response = requests.post( | |
| url="https://openrouter.ai/api/v1/chat/completions", | |
| headers={{ | |
| "Authorization": f"Bearer {{API_KEY}}", | |
| "Content-Type": "application/json" | |
| }}, | |
| json={{ | |
| "model": MODEL, | |
| "messages": messages, | |
| "temperature": {temperature}, | |
| "max_tokens": {max_tokens} | |
| }} | |
| ) | |
| if response.status_code == 200: | |
| return response.json()['choices'][0]['message']['content'] | |
| else: | |
| return f"Error: {{response.status_code}} - {{response.text}}" | |
| except Exception as e: | |
| return f"Error: {{str(e)}}" | |
| # Create simple Gradio interface using ChatInterface | |
| demo = gr.ChatInterface( | |
| fn=generate_response, | |
| title=SPACE_NAME, | |
| description=SPACE_DESCRIPTION, | |
| examples={examples} | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| ''' | |
| # Available models | |
| MODELS = [ | |
| "google/gemma-2-27b-it", | |
| "mistralai/mixtral-8x7b-instruct", | |
| "meta-llama/llama-3.1-70b-instruct", | |
| "anthropic/claude-3-haiku", | |
| "nvidia/nemotron-4-340b-instruct" | |
| ] | |
| def fetch_url_content(url): | |
| """Fetch and extract text content from a URL""" | |
| try: | |
| response = requests.get(url, timeout=10) | |
| response.raise_for_status() | |
| soup = BeautifulSoup(response.content, 'html.parser') | |
| # Remove script and style elements | |
| for script in soup(["script", "style"]): | |
| script.decompose() | |
| # Get text content | |
| text = soup.get_text() | |
| # Clean up whitespace | |
| lines = (line.strip() for line in text.splitlines()) | |
| chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
| text = ' '.join(chunk for chunk in chunks if chunk) | |
| # Truncate to ~4000 characters | |
| if len(text) > 4000: | |
| text = text[:4000] + "..." | |
| return text | |
| except Exception as e: | |
| return f"Error fetching {url}: {str(e)}" | |
| def get_grounding_context(urls): | |
| """Fetch context from grounding URLs""" | |
| if not urls: | |
| return "" | |
| context_parts = [] | |
| for i, url in enumerate(urls, 1): | |
| if url and url.strip(): | |
| content = fetch_url_content(url.strip()) | |
| context_parts.append(f"Context from URL {i} ({url}):\n{content}") | |
| if context_parts: | |
| return "\n\n" + "\n\n".join(context_parts) + "\n\n" | |
| return "" | |
| def create_readme(config): | |
| """Generate README with deployment instructions""" | |
| return f"""--- | |
| title: {config['name']} | |
| emoji: 🤖 | |
| colorFrom: blue | |
| colorTo: red | |
| sdk: gradio | |
| sdk_version: 4.32.0 | |
| app_file: app.py | |
| pinned: false | |
| --- | |
| # {config['name']} | |
| {config['description']} | |
| ## Quick Deploy to HuggingFace Spaces | |
| ### Step 1: Create the Space | |
| 1. Go to https://huggingface.co/spaces | |
| 2. Click "Create new Space" | |
| 3. Choose a name for your Space | |
| 4. Select **Gradio** as the SDK | |
| 5. Set visibility (Public/Private) | |
| 6. Click "Create Space" | |
| ### Step 2: Upload Files | |
| 1. In your new Space, click "Files" tab | |
| 2. Upload these files from the zip: | |
| - `app.py` | |
| - `requirements.txt` | |
| 3. Wait for "Building" to complete | |
| ### Step 3: Add API Key | |
| 1. Go to Settings (gear icon) | |
| 2. Click "Variables and secrets" | |
| 3. Click "New secret" | |
| 4. Name: `{config['api_key_var']}` | |
| 5. Value: Your OpenRouter API key | |
| 6. Click "Add" | |
| ### Step 4: Get Your API Key | |
| 1. Go to https://openrouter.ai/keys | |
| 2. Sign up/login if needed | |
| 3. Click "Create Key" | |
| 4. Copy the key (starts with `sk-or-`) | |
| ### Step 5: Test Your Space | |
| - Go back to "App" tab | |
| - Your Space should be running! | |
| - Try the example prompts or ask a question | |
| ## Configuration | |
| - **Model**: {config['model']} | |
| - **Temperature**: {config['temperature']} | |
| - **Max Tokens**: {config['max_tokens']} | |
| - **API Key Variable**: {config['api_key_var']} | |
| ## Cost Information | |
| OpenRouter charges per token used: | |
| - Gemma 2 9B: ~$0.20 per million tokens | |
| - Claude Haiku: ~$0.25 per million tokens | |
| - GPT-4o-mini: ~$0.60 per million tokens | |
| Typical conversation: ~300 tokens (cost: $0.00006 - $0.0018) | |
| Check current pricing: https://openrouter.ai/models | |
| ## Customization | |
| To modify your Space: | |
| 1. Edit `app.py` in your Space | |
| 2. Update configuration variables at the top | |
| 3. Changes deploy automatically | |
| ## Troubleshooting | |
| - **"Please set your {config['api_key_var']}"**: Add the secret in Space settings | |
| - **Error 401**: Invalid API key or no credits | |
| - **Error 429**: Rate limit - wait and try again | |
| - **Build failed**: Check requirements.txt formatting | |
| ## More Help | |
| - HuggingFace Spaces: https://huggingface.co/docs/hub/spaces | |
| - OpenRouter Docs: https://openrouter.ai/docs | |
| - Gradio Docs: https://gradio.app/docs | |
| --- | |
| Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} with Chat U/I Helper | |
| """ | |
| def create_requirements(): | |
| """Generate requirements.txt""" | |
| return "gradio==4.44.1\nrequests==2.32.3\nbeautifulsoup4==4.12.3" | |
| def generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, url1="", url2="", url3="", url4=""): | |
| """Generate deployable zip file""" | |
| # Process examples | |
| if examples_text and examples_text.strip(): | |
| examples_list = [ex.strip() for ex in examples_text.split('\n') if ex.strip()] | |
| examples_json = json.dumps(examples_list) | |
| else: | |
| examples_json = json.dumps([ | |
| "Hello! How can you help me?", | |
| "Tell me something interesting", | |
| "What can you do?" | |
| ]) | |
| # Process grounding URLs | |
| grounding_urls = [] | |
| for url in [url1, url2, url3, url4]: | |
| if url and url.strip(): | |
| grounding_urls.append(url.strip()) | |
| # Create config | |
| config = { | |
| 'name': name, | |
| 'description': description, | |
| 'system_prompt': system_prompt, | |
| 'model': model, | |
| 'api_key_var': api_key_var, | |
| 'temperature': temperature, | |
| 'max_tokens': int(max_tokens), | |
| 'examples': examples_json, | |
| 'grounding_urls': json.dumps(grounding_urls) | |
| } | |
| # Generate files | |
| app_content = SPACE_TEMPLATE.format(**config) | |
| readme_content = create_readme(config) | |
| requirements_content = create_requirements() | |
| # Create zip file with clean naming | |
| filename = f"{name.lower().replace(' ', '_').replace('-', '_')}.zip" | |
| # Create zip in memory and save to disk | |
| zip_buffer = io.BytesIO() | |
| with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file: | |
| zip_file.writestr('app.py', app_content) | |
| zip_file.writestr('requirements.txt', requirements_content) | |
| zip_file.writestr('README.md', readme_content) | |
| zip_file.writestr('config.json', json.dumps(config, indent=2)) | |
| # Write zip to file | |
| zip_buffer.seek(0) | |
| with open(filename, 'wb') as f: | |
| f.write(zip_buffer.getvalue()) | |
| return filename | |
| # Define callback functions outside the interface | |
| def on_generate(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, url1, url2, url3, url4): | |
| if not name or not name.strip(): | |
| return gr.update(value="Error: Please provide a Space Title", visible=True), gr.update(visible=False) | |
| if not system_prompt or not system_prompt.strip(): | |
| return gr.update(value="Error: Please provide a System Prompt", visible=True), gr.update(visible=False) | |
| try: | |
| filename = generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, url1, url2, url3, url4) | |
| success_msg = f"""**Deployment package ready!** | |
| **File**: `{filename}` | |
| **What's included:** | |
| - `app.py` - Ready-to-deploy chat interface | |
| - `requirements.txt` - Dependencies | |
| - `README.md` - Step-by-step deployment guide | |
| - `config.json` - Configuration backup | |
| **Next steps:** | |
| 1. Download the zip file below | |
| 2. Follow the README instructions to deploy on HuggingFace Spaces | |
| 3. Set your `{api_key_var}` secret in Space settings | |
| **Your Space will be live in minutes!**""" | |
| return gr.update(value=success_msg, visible=True), gr.update(value=filename, visible=True) | |
| except Exception as e: | |
| return gr.update(value=f"Error: {str(e)}", visible=True), gr.update(visible=False) | |
| def respond(message, chat_history, url1="", url2="", url3="", url4=""): | |
| # Make actual API request to OpenRouter | |
| import os | |
| import requests | |
| # Get API key from environment | |
| api_key = os.environ.get("OPENROUTER_API_KEY") | |
| if not api_key: | |
| response = "Please set your OPENROUTER_API_KEY in the Space settings to use the chat support." | |
| chat_history.append([message, response]) | |
| return "", chat_history | |
| # Get grounding context from URLs | |
| grounding_urls = [url1, url2, url3, url4] | |
| grounding_context = get_grounding_context(grounding_urls) | |
| # Build enhanced system prompt with grounding context | |
| base_system_prompt = """You are a helpful assistant specializing in creating chat UIs for HuggingFace Spaces. You help users configure assistants for education and research. Provide concise, practical advice about: | |
| - System prompts for different use cases (courses, research, tutoring) | |
| - Model selection (recommending google/gemma-2-27b-it as a great balance) | |
| - HuggingFace Space deployment tips | |
| - Customization options | |
| Keep responses brief and actionable. Focus on what the user is specifically asking about.""" | |
| enhanced_system_prompt = base_system_prompt + grounding_context | |
| # Build conversation history for API | |
| messages = [{ | |
| "role": "system", | |
| "content": enhanced_system_prompt | |
| }] | |
| # Add conversation history - Gradio 4.x uses list/tuple format | |
| for chat in chat_history: | |
| if isinstance(chat, (list, tuple)) and len(chat) >= 2: | |
| user_msg, assistant_msg = chat[0], chat[1] | |
| if user_msg: | |
| messages.append({"role": "user", "content": user_msg}) | |
| if assistant_msg: | |
| messages.append({"role": "assistant", "content": assistant_msg}) | |
| # Add current message | |
| messages.append({"role": "user", "content": message}) | |
| try: | |
| # Make API request to OpenRouter | |
| response = requests.post( | |
| url="https://openrouter.ai/api/v1/chat/completions", | |
| headers={ | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| }, | |
| json={ | |
| "model": "google/gemma-2-27b-it", | |
| "messages": messages, | |
| "temperature": 0.7, | |
| "max_tokens": 500 | |
| } | |
| ) | |
| if response.status_code == 200: | |
| assistant_response = response.json()['choices'][0]['message']['content'] | |
| else: | |
| assistant_response = f"Error: {response.status_code} - {response.text}" | |
| except Exception as e: | |
| assistant_response = f"Error: {str(e)}" | |
| chat_history.append([message, assistant_response]) | |
| return "", chat_history | |
| def clear_chat(): | |
| return "", [] | |
| # Create Gradio interface with proper tab structure | |
| with gr.Blocks(title="Chat U/I Helper") as demo: | |
| with gr.Tabs(): | |
| with gr.Tab("Spaces Configuration"): | |
| gr.Markdown("# Spaces Configuration") | |
| gr.Markdown("Convert custom assistants from HuggingChat into chat interfaces with HuggingFace Spaces. Configure and download everything needed to deploy a simple HF space using Gradio.") | |
| with gr.Column(): | |
| name = gr.Textbox( | |
| label="Space Title", | |
| placeholder="My Course Helper", | |
| value="My Custom Space" | |
| ) | |
| description = gr.Textbox( | |
| label="Space Description", | |
| placeholder="A customizable AI chat interface for...", | |
| lines=2, | |
| value="An AI research assistant tailored for academic inquiry and scholarly dialogue" | |
| ) | |
| model = gr.Dropdown( | |
| label="Model", | |
| choices=MODELS, | |
| value=MODELS[0], | |
| info="Choose based on your needs and budget" | |
| ) | |
| api_key_var = gr.Textbox( | |
| label="API Key Variable Name", | |
| value="OPENROUTER_API_KEY", | |
| info="Name for the secret in HuggingFace Space settings" | |
| ) | |
| system_prompt = gr.Textbox( | |
| label="System Prompt", | |
| placeholder="You are a research assistant...", | |
| lines=4, | |
| value="You are a knowledgeable academic research assistant. Provide thoughtful, evidence-based guidance for scholarly work, literature reviews, and academic writing. Support students and researchers with clear explanations and critical thinking." | |
| ) | |
| examples_text = gr.Textbox( | |
| label="Example Prompts (one per line)", | |
| placeholder="Hello! How can you help me?\nWhat's the weather like?\nExplain quantum computing", | |
| lines=3, | |
| info="These will appear as clickable examples in the chat interface" | |
| ) | |
| gr.Markdown("### URL Grounding (Optional)") | |
| gr.Markdown("Add up to 4 URLs to provide context. Content will be fetched and added to the system prompt.") | |
| url1 = gr.Textbox( | |
| label="URL 1", | |
| placeholder="https://example.com/page1", | |
| info="First URL for context grounding" | |
| ) | |
| url2 = gr.Textbox( | |
| label="URL 2", | |
| placeholder="https://example.com/page2", | |
| info="Second URL for context grounding" | |
| ) | |
| url3 = gr.Textbox( | |
| label="URL 3", | |
| placeholder="https://example.com/page3", | |
| info="Third URL for context grounding" | |
| ) | |
| url4 = gr.Textbox( | |
| label="URL 4", | |
| placeholder="https://example.com/page4", | |
| info="Fourth URL for context grounding" | |
| ) | |
| with gr.Row(): | |
| temperature = gr.Slider( | |
| label="Temperature", | |
| minimum=0, | |
| maximum=2, | |
| value=0.7, | |
| step=0.1, | |
| info="Higher = more creative, Lower = more focused" | |
| ) | |
| max_tokens = gr.Slider( | |
| label="Max Response Tokens", | |
| minimum=50, | |
| maximum=4096, | |
| value=1024, | |
| step=50 | |
| ) | |
| generate_btn = gr.Button("Generate Deployment Package", variant="primary") | |
| status = gr.Markdown(visible=False) | |
| download_file = gr.File(label="Download your zip package", visible=False) | |
| # Connect the generate button | |
| generate_btn.click( | |
| on_generate, | |
| inputs=[name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, url1, url2, url3, url4], | |
| outputs=[status, download_file] | |
| ) | |
| with gr.Tab("Chat Support"): | |
| gr.Markdown("# Chat Support") | |
| gr.Markdown("Get personalized guidance on configuring chat assistants as HuggingFace Spaces for educational & research purposes.") | |
| # Meta chat interface | |
| with gr.Column(): | |
| chatbot = gr.Chatbot( | |
| value=[], | |
| label="Chat Support Assistant", | |
| height=400 | |
| ) | |
| msg = gr.Textbox( | |
| label="Ask about configuring chat UIs for courses, research, or custom HuggingFace Spaces", | |
| placeholder="How can I configure a chat UI for my senior seminar?", | |
| lines=2 | |
| ) | |
| with gr.Accordion("URL Grounding (Optional)", open=False): | |
| gr.Markdown("Add URLs to provide additional context for more informed responses") | |
| chat_url1 = gr.Textbox( | |
| label="URL 1", | |
| placeholder="https://example.com/context1", | |
| info="First URL for context" | |
| ) | |
| chat_url2 = gr.Textbox( | |
| label="URL 2", | |
| placeholder="https://example.com/context2", | |
| info="Second URL for context" | |
| ) | |
| chat_url3 = gr.Textbox( | |
| label="URL 3", | |
| placeholder="https://example.com/context3", | |
| info="Third URL for context" | |
| ) | |
| chat_url4 = gr.Textbox( | |
| label="URL 4", | |
| placeholder="https://example.com/context4", | |
| info="Fourth URL for context" | |
| ) | |
| with gr.Row(): | |
| submit = gr.Button("Send", variant="primary") | |
| clear = gr.Button("Clear") | |
| gr.Examples( | |
| examples=[ | |
| "How do I set up a course assistant?", | |
| "Which model should I use?", | |
| "What's a good system prompt?", | |
| "Why Gradio? What is it?", | |
| "How do I customize the chat interface?", | |
| "Can you help me troubleshoot?", | |
| ], | |
| inputs=msg | |
| ) | |
| # Connect the chat functionality | |
| submit.click(respond, [msg, chatbot, chat_url1, chat_url2, chat_url3, chat_url4], [msg, chatbot]) | |
| msg.submit(respond, [msg, chatbot, chat_url1, chat_url2, chat_url3, chat_url4], [msg, chatbot]) | |
| clear.click(clear_chat, outputs=[msg, chatbot]) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |