Spaces:
Running
Running
import warnings | |
warnings.filterwarnings("ignore", message="The 'tuples' format for chatbot messages is deprecated") | |
import gradio as gr | |
import json | |
import zipfile | |
import io | |
import os | |
from datetime import datetime | |
from dotenv import load_dotenv | |
import requests | |
from bs4 import BeautifulSoup | |
import tempfile | |
from pathlib import Path | |
from support_docs import create_support_docs, export_conversation_to_markdown | |
# Simple URL content fetching using requests and BeautifulSoup | |
def get_grounding_context_simple(urls): | |
"""Fetch grounding context using enhanced HTTP requests""" | |
if not urls: | |
return "" | |
context_parts = [] | |
for i, url in enumerate(urls, 1): | |
if url and url.strip(): | |
# Use enhanced URL extraction for any URLs within the URL text | |
extracted_urls = extract_urls_from_text(url.strip()) | |
target_url = extracted_urls[0] if extracted_urls else url.strip() | |
content = enhanced_fetch_url_content(target_url) | |
context_parts.append(f"Context from URL {i} ({target_url}):\n{content}") | |
if context_parts: | |
return "\n\n" + "\n\n".join(context_parts) + "\n\n" | |
return "" | |
# Import RAG components | |
try: | |
from rag_tool import RAGTool | |
HAS_RAG = True | |
except ImportError: | |
HAS_RAG = False | |
RAGTool = None | |
# Load environment variables from .env file | |
load_dotenv() | |
# Utility functions | |
import re | |
def extract_urls_from_text(text): | |
"""Extract URLs from text using regex with enhanced validation""" | |
url_pattern = r'https?://[^\s<>"{}|\\^`\[\]"]+' | |
urls = re.findall(url_pattern, text) | |
# Basic URL validation and cleanup | |
validated_urls = [] | |
for url in urls: | |
# Remove trailing punctuation that might be captured | |
url = url.rstrip('.,!?;:') | |
# Basic domain validation | |
if '.' in url and len(url) > 10: | |
validated_urls.append(url) | |
return validated_urls | |
def validate_url_domain(url): | |
"""Basic URL domain validation""" | |
try: | |
from urllib.parse import urlparse | |
parsed = urlparse(url) | |
# Check for valid domain structure | |
if parsed.netloc and '.' in parsed.netloc: | |
return True | |
except: | |
pass | |
return False | |
def enhanced_fetch_url_content(url, enable_search_validation=False): | |
"""Enhanced URL content fetching with optional search validation""" | |
if not validate_url_domain(url): | |
return f"Invalid URL format: {url}" | |
try: | |
# Enhanced headers for better compatibility | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', | |
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', | |
'Accept-Language': 'en-US,en;q=0.5', | |
'Accept-Encoding': 'gzip, deflate', | |
'Connection': 'keep-alive' | |
} | |
response = requests.get(url, timeout=15, headers=headers) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Enhanced content cleaning | |
for element in soup(["script", "style", "nav", "header", "footer", "aside", "form", "button"]): | |
element.decompose() | |
# Extract main content preferentially | |
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=lambda x: bool(x and 'content' in x.lower())) or soup | |
text = main_content.get_text() | |
# Enhanced text cleaning | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = ' '.join(chunk for chunk in chunks if chunk and len(chunk) > 2) | |
# Smart truncation - try to end at sentence boundaries | |
if len(text) > 4000: | |
truncated = text[:4000] | |
last_period = truncated.rfind('.') | |
if last_period > 3000: # If we can find a reasonable sentence break | |
text = truncated[:last_period + 1] | |
else: | |
text = truncated + "..." | |
return text if text.strip() else "No readable content found at this URL" | |
except requests.exceptions.Timeout: | |
return f"Timeout error fetching {url} (15s limit exceeded)" | |
except requests.exceptions.RequestException as e: | |
return f"Error fetching {url}: {str(e)}" | |
except Exception as e: | |
return f"Error processing content from {url}: {str(e)}" | |
# Template for generated space app (based on mvp_simple.py) | |
SPACE_TEMPLATE = '''import gradio as gr | |
import os | |
import requests | |
import json | |
from bs4 import BeautifulSoup | |
from datetime import datetime | |
import tempfile | |
# Configuration | |
SPACE_NAME = "{name}" | |
SPACE_DESCRIPTION = "{description}" | |
SYSTEM_PROMPT = """{system_prompt}""" | |
MODEL = "{model}" | |
GROUNDING_URLS = {grounding_urls} | |
# Get access code from environment variable for security | |
ACCESS_CODE = os.environ.get("SPACE_ACCESS_CODE", "{access_code}") | |
ENABLE_DYNAMIC_URLS = {enable_dynamic_urls} | |
ENABLE_VECTOR_RAG = {enable_vector_rag} | |
ENABLE_WEB_SEARCH = {enable_web_search} | |
RAG_DATA = {rag_data_json} | |
# Get API key from environment - customizable variable name with validation | |
API_KEY = os.environ.get("{api_key_var}") | |
if API_KEY: | |
API_KEY = API_KEY.strip() # Remove any whitespace | |
if not API_KEY: # Check if empty after stripping | |
API_KEY = None | |
# API Key validation and logging | |
def validate_api_key(): | |
"""Validate API key configuration with detailed logging""" | |
if not API_KEY: | |
print(f"β οΈ API KEY CONFIGURATION ERROR:") | |
print(f" Variable name: {api_key_var}") | |
print(f" Status: Not set or empty") | |
print(f" Action needed: Set '{api_key_var}' in HuggingFace Space secrets") | |
print(f" Expected format: sk-or-xxxxxxxxxx") | |
return False | |
elif not API_KEY.startswith('sk-or-'): | |
print(f"β οΈ API KEY FORMAT WARNING:") | |
print(f" Variable name: {api_key_var}") | |
print(f" Current value: {{{{API_KEY[:10]}}}}..." if len(API_KEY) > 10 else API_KEY) | |
print(f" Expected format: sk-or-xxxxxxxxxx") | |
print(f" Note: OpenRouter keys should start with 'sk-or-'") | |
return True # Still try to use it | |
else: | |
print(f"β API Key configured successfully") | |
print(f" Variable: {api_key_var}") | |
print(f" Format: Valid OpenRouter key") | |
return True | |
# Validate on startup | |
API_KEY_VALID = validate_api_key() | |
def fetch_url_content(url): | |
"""Fetch and extract text content from a URL using requests and BeautifulSoup""" | |
try: | |
response = requests.get(url, timeout=10, headers={{'User-Agent': 'Mozilla/5.0'}}) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Remove script and style elements | |
for script in soup(["script", "style", "nav", "header", "footer"]): | |
script.decompose() | |
# Get text content | |
text = soup.get_text() | |
# Clean up whitespace | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = ' '.join(chunk for chunk in chunks if chunk) | |
# Truncate to ~4000 characters | |
if len(text) > 4000: | |
text = text[:4000] + "..." | |
return text | |
except Exception as e: | |
return f"Error fetching {{url}}: {{str(e)}}" | |
def extract_urls_from_text(text): | |
"""Extract URLs from text using regex""" | |
import re | |
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' | |
return re.findall(url_pattern, text) | |
# Global cache for URL content to avoid re-crawling in generated spaces | |
_url_content_cache = {{}} | |
def get_grounding_context(): | |
"""Fetch context from grounding URLs with caching""" | |
if not GROUNDING_URLS: | |
return "" | |
# Create cache key from URLs | |
cache_key = tuple(sorted([url for url in GROUNDING_URLS if url and url.strip()])) | |
# Check cache first | |
if cache_key in _url_content_cache: | |
return _url_content_cache[cache_key] | |
context_parts = [] | |
for i, url in enumerate(GROUNDING_URLS, 1): | |
if url.strip(): | |
content = fetch_url_content(url.strip()) | |
context_parts.append(f"Context from URL {{i}} ({{url}}):\\n{{content}}") | |
if context_parts: | |
result = "\\n\\n" + "\\n\\n".join(context_parts) + "\\n\\n" | |
else: | |
result = "" | |
# Cache the result | |
_url_content_cache[cache_key] = result | |
return result | |
def export_conversation_to_markdown(conversation_history): | |
"""Export conversation history to markdown format""" | |
if not conversation_history: | |
return "No conversation to export." | |
markdown_content = f"""# Conversation Export | |
Generated on: {{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}} | |
--- | |
""" | |
for i, message in enumerate(conversation_history): | |
if isinstance(message, dict): | |
role = message.get('role', 'unknown') | |
content = message.get('content', '') | |
if role == 'user': | |
markdown_content += f"## User Message {{(i//2) + 1}}\\n\\n{{content}}\\n\\n" | |
elif role == 'assistant': | |
markdown_content += f"## Assistant Response {{(i//2) + 1}}\\n\\n{{content}}\\n\\n---\\n\\n" | |
return markdown_content | |
# Initialize RAG context if enabled | |
if ENABLE_VECTOR_RAG and RAG_DATA: | |
try: | |
import faiss | |
import numpy as np | |
import base64 | |
class SimpleRAGContext: | |
def __init__(self, rag_data): | |
# Deserialize FAISS index | |
index_bytes = base64.b64decode(rag_data['index_base64']) | |
self.index = faiss.deserialize_index(index_bytes) | |
# Restore chunks and mappings | |
self.chunks = rag_data['chunks'] | |
self.chunk_ids = rag_data['chunk_ids'] | |
def get_context(self, query, max_chunks=3): | |
"""Get relevant context - simplified version""" | |
# In production, you'd compute query embedding here | |
# For now, return a simple message | |
return "\\n\\n[RAG context would be retrieved here based on similarity search]\\n\\n" | |
rag_context_provider = SimpleRAGContext(RAG_DATA) | |
except Exception as e: | |
print(f"Failed to initialize RAG: {{e}}") | |
rag_context_provider = None | |
else: | |
rag_context_provider = None | |
def generate_response(message, history): | |
"""Generate response using OpenRouter API""" | |
# Enhanced API key validation with helpful messages | |
if not API_KEY: | |
error_msg = f"π **API Key Required**\\n\\n" | |
error_msg += f"Please configure your OpenRouter API key:\\n" | |
error_msg += f"1. Go to Settings (βοΈ) in your HuggingFace Space\\n" | |
error_msg += f"2. Click 'Variables and secrets'\\n" | |
error_msg += f"3. Add secret: **{api_key_var}**\\n" | |
error_msg += f"4. Value: Your OpenRouter API key (starts with `sk-or-`)\\n\\n" | |
error_msg += f"Get your API key at: https://openrouter.ai/keys" | |
print(f"β API request failed: No API key configured for {api_key_var}") | |
return error_msg | |
# Get grounding context | |
grounding_context = get_grounding_context() | |
# Add RAG context if available | |
if ENABLE_VECTOR_RAG and rag_context_provider: | |
rag_context = rag_context_provider.get_context(message) | |
if rag_context: | |
grounding_context += rag_context | |
# If dynamic URLs are enabled, check message for URLs to fetch | |
if ENABLE_DYNAMIC_URLS: | |
urls_in_message = extract_urls_from_text(message) | |
if urls_in_message: | |
# Fetch content from URLs mentioned in the message | |
dynamic_context_parts = [] | |
for url in urls_in_message[:3]: # Limit to 3 URLs per message | |
content = fetch_url_content(url) | |
dynamic_context_parts.append(f"\\n\\nDynamic context from {{url}}:\\n{{content}}") | |
if dynamic_context_parts: | |
grounding_context += "\\n".join(dynamic_context_parts) | |
# If web search is enabled, use it for most queries (excluding code blocks and URLs) | |
if ENABLE_WEB_SEARCH: | |
should_search = True | |
# Skip search for messages that are primarily code blocks | |
import re | |
if re.search(r'```[\\s\\S]*```', message): | |
should_search = False | |
# Skip search for messages that are primarily URLs | |
urls_in_message = extract_urls_from_text(message) | |
if urls_in_message and len(' '.join(urls_in_message)) > len(message) * 0.5: | |
should_search = False | |
# Skip search for very short messages (likely greetings) | |
if len(message.strip()) < 5: | |
should_search = False | |
if should_search: | |
# Use the entire message as search query, cleaning it up | |
search_query = message.strip() | |
try: | |
# Perform web search using crawl4ai | |
import urllib.parse | |
import asyncio | |
async def search_with_crawl4ai(search_query): | |
try: | |
from crawl4ai import WebCrawler | |
# Create search URL for DuckDuckGo | |
encoded_query = urllib.parse.quote_plus(search_query) | |
search_url = f"https://duckduckgo.com/html/?q={{encoded_query}}" | |
# Initialize crawler | |
crawler = WebCrawler(verbose=False) | |
try: | |
# Start the crawler | |
await crawler.astart() | |
# Crawl the search results | |
result = await crawler.arun(url=search_url) | |
if result.success: | |
# Extract text content from search results | |
content = result.cleaned_html if result.cleaned_html else result.markdown | |
# Clean and truncate the content | |
if content: | |
# Remove excessive whitespace and limit length | |
lines = [line.strip() for line in content.split('\\n') if line.strip()] | |
cleaned_content = '\\n'.join(lines) | |
# Truncate to reasonable length for context | |
if len(cleaned_content) > 2000: | |
cleaned_content = cleaned_content[:2000] + "..." | |
return cleaned_content | |
else: | |
return "No content extracted from search results" | |
else: | |
return f"Search failed: {{result.error_message if hasattr(result, 'error_message') else 'Unknown error'}}" | |
finally: | |
# Clean up the crawler | |
await crawler.aclose() | |
except ImportError: | |
# Fallback to simple DuckDuckGo search without crawl4ai | |
encoded_query = urllib.parse.quote_plus(search_query) | |
search_url = f"https://duckduckgo.com/html/?q={{encoded_query}}" | |
# Use basic fetch as fallback | |
response = requests.get(search_url, headers={{'User-Agent': 'Mozilla/5.0'}}, timeout=10) | |
if response.status_code == 200: | |
from bs4 import BeautifulSoup | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Remove script and style elements | |
for script in soup(["script", "style", "nav", "header", "footer"]): | |
script.decompose() | |
# Get text content | |
text = soup.get_text() | |
# Clean up whitespace | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = ' '.join(chunk for chunk in chunks if chunk) | |
# Truncate to ~2000 characters | |
if len(text) > 2000: | |
text = text[:2000] + "..." | |
return text | |
else: | |
return f"Failed to fetch search results: {{response.status_code}}" | |
# Run the async search | |
if hasattr(asyncio, 'run'): | |
search_result = asyncio.run(search_with_crawl4ai(search_query)) | |
else: | |
# Fallback for older Python versions | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
try: | |
search_result = loop.run_until_complete(search_with_crawl4ai(search_query)) | |
finally: | |
loop.close() | |
grounding_context += f"\\n\\nWeb search results for '{{search_query}}':\\n{{search_result}}" | |
except Exception as e: | |
# Fallback to URL extraction if web search fails | |
urls = extract_urls_from_text(search_query) | |
if urls: | |
for url in urls[:2]: # Limit to 2 URLs for fallback | |
content = fetch_url_content(url) | |
grounding_context += f"\\n\\nFallback content from {{url}}:\\n{{content[:500]}}..." | |
else: | |
grounding_context += f"\\n\\nWeb search requested: {{search_query}} (external search not available)" | |
# Build enhanced system prompt with grounding context | |
enhanced_system_prompt = SYSTEM_PROMPT + grounding_context | |
# Build messages array for the API | |
messages = [{{"role": "system", "content": enhanced_system_prompt}}] | |
# Add conversation history - compatible with Gradio 5.x format | |
for chat in history: | |
if isinstance(chat, dict): | |
# New format: {{"role": "user", "content": "..."}} or {{"role": "assistant", "content": "..."}} | |
messages.append(chat) | |
else: | |
# Legacy format: ("user msg", "bot msg") | |
user_msg, bot_msg = chat | |
messages.append({{"role": "user", "content": user_msg}}) | |
if bot_msg: | |
messages.append({{"role": "assistant", "content": bot_msg}}) | |
# Add current message | |
messages.append({{"role": "user", "content": message}}) | |
# Make API request with enhanced error handling | |
try: | |
print(f"π Making API request to OpenRouter...") | |
print(f" Model: {{MODEL}}") | |
print(f" Messages: {{len(messages)}} in conversation") | |
response = requests.post( | |
url="https://openrouter.ai/api/v1/chat/completions", | |
headers={{ | |
"Authorization": f"Bearer {{API_KEY}}", | |
"Content-Type": "application/json", | |
"HTTP-Referer": "https://huggingface.co", # Required by some providers | |
"X-Title": "HuggingFace Space" # Helpful for tracking | |
}}, | |
json={{ | |
"model": MODEL, | |
"messages": messages, | |
"temperature": {temperature}, | |
"max_tokens": {max_tokens} | |
}}, | |
timeout=30 | |
) | |
print(f"π‘ API Response: {{response.status_code}}") | |
if response.status_code == 200: | |
result = response.json() | |
content = result['choices'][0]['message']['content'] | |
print(f"β API request successful") | |
return content | |
elif response.status_code == 401: | |
error_msg = f"π **Authentication Error**\\n\\n" | |
error_msg += f"Your API key appears to be invalid or expired.\\n\\n" | |
error_msg += f"**Troubleshooting:**\\n" | |
error_msg += f"1. Check that your **{api_key_var}** secret is set correctly\\n" | |
error_msg += f"2. Verify your API key at: https://openrouter.ai/keys\\n" | |
error_msg += f"3. Ensure your key starts with `sk-or-`\\n" | |
error_msg += f"4. Check that you have credits on your OpenRouter account" | |
print(f"β API authentication failed: {{response.status_code}} - {{response.text[:200]}}") | |
return error_msg | |
elif response.status_code == 429: | |
error_msg = f"β±οΈ **Rate Limit Exceeded**\\n\\n" | |
error_msg += f"Too many requests. Please wait a moment and try again.\\n\\n" | |
error_msg += f"**Troubleshooting:**\\n" | |
error_msg += f"1. Wait 30-60 seconds before trying again\\n" | |
error_msg += f"2. Check your OpenRouter usage limits\\n" | |
error_msg += f"3. Consider upgrading your OpenRouter plan" | |
print(f"β Rate limit exceeded: {{response.status_code}}") | |
return error_msg | |
elif response.status_code == 400: | |
try: | |
error_data = response.json() | |
error_message = error_data.get('error', {{}}).get('message', 'Unknown error') | |
except: | |
error_message = response.text | |
error_msg = f"β οΈ **Request Error**\\n\\n" | |
error_msg += f"The API request was invalid:\\n" | |
error_msg += f"`{{error_message}}`\\n\\n" | |
if "model" in error_message.lower(): | |
error_msg += f"**Model Issue:** The model `{{MODEL}}` may not be available.\\n" | |
error_msg += f"Try switching to a different model in your Space configuration." | |
print(f"β Bad request: {{response.status_code}} - {{error_message}}") | |
return error_msg | |
else: | |
error_msg = f"π« **API Error {{response.status_code}}**\\n\\n" | |
error_msg += f"An unexpected error occurred. Please try again.\\n\\n" | |
error_msg += f"If this persists, check:\\n" | |
error_msg += f"1. OpenRouter service status\\n" | |
error_msg += f"2. Your API key and credits\\n" | |
error_msg += f"3. The model availability" | |
print(f"β API error: {{response.status_code}} - {{response.text[:200]}}") | |
return error_msg | |
except requests.exceptions.Timeout: | |
error_msg = f"β° **Request Timeout**\\n\\n" | |
error_msg += f"The API request took too long (30s limit).\\n\\n" | |
error_msg += f"**Troubleshooting:**\\n" | |
error_msg += f"1. Try again with a shorter message\\n" | |
error_msg += f"2. Check your internet connection\\n" | |
error_msg += f"3. Try a different model" | |
print(f"β Request timeout after 30 seconds") | |
return error_msg | |
except requests.exceptions.ConnectionError: | |
error_msg = f"π **Connection Error**\\n\\n" | |
error_msg += f"Could not connect to OpenRouter API.\\n\\n" | |
error_msg += f"**Troubleshooting:**\\n" | |
error_msg += f"1. Check your internet connection\\n" | |
error_msg += f"2. Check OpenRouter service status\\n" | |
error_msg += f"3. Try again in a few moments" | |
print(f"β Connection error to OpenRouter API") | |
return error_msg | |
except Exception as e: | |
error_msg = f"β **Unexpected Error**\\n\\n" | |
error_msg += f"An unexpected error occurred:\\n" | |
error_msg += f"`{{str(e)}}`\\n\\n" | |
error_msg += f"Please try again or contact support if this persists." | |
print(f"β Unexpected error: {{str(e)}}") | |
return error_msg | |
# Access code verification | |
access_granted = gr.State(False) | |
_access_granted_global = False # Global fallback | |
def verify_access_code(code): | |
\"\"\"Verify the access code\"\"\" | |
global _access_granted_global | |
if not ACCESS_CODE: | |
_access_granted_global = True | |
return gr.update(visible=False), gr.update(visible=True), gr.update(value=True) | |
if code == ACCESS_CODE: | |
_access_granted_global = True | |
return gr.update(visible=False), gr.update(visible=True), gr.update(value=True) | |
else: | |
_access_granted_global = False | |
return gr.update(visible=True, value="β Incorrect access code. Please try again."), gr.update(visible=False), gr.update(value=False) | |
def protected_generate_response(message, history): | |
\"\"\"Protected response function that checks access\"\"\" | |
# Check if access is granted via the global variable | |
if ACCESS_CODE and not _access_granted_global: | |
return "Please enter the access code to continue." | |
return generate_response(message, history) | |
def export_conversation(history): | |
\"\"\"Export conversation to markdown file\"\"\" | |
if not history: | |
return gr.update(visible=False) | |
markdown_content = export_conversation_to_markdown(history) | |
# Save to temporary file | |
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False) as f: | |
f.write(markdown_content) | |
temp_file = f.name | |
return gr.update(value=temp_file, visible=True) | |
# Configuration status display | |
def get_configuration_status(): | |
\"\"\"Generate a configuration status message for display\"\"\" | |
status_parts = [] | |
if API_KEY_VALID: | |
status_parts.append("β **API Key:** Configured and valid") | |
else: | |
status_parts.append("β **API Key:** Not configured - Set `{api_key_var}` in Space secrets") | |
status_parts.append(f"π€ **Model:** {{MODEL}}") | |
status_parts.append(f"π‘οΈ **Temperature:** {temperature}") | |
status_parts.append(f"π **Max Tokens:** {max_tokens}") | |
if GROUNDING_URLS: | |
status_parts.append(f"π **URL Grounding:** {{len(GROUNDING_URLS)}} URLs configured") | |
if ENABLE_DYNAMIC_URLS: | |
status_parts.append("π **Dynamic URLs:** Enabled") | |
if ENABLE_WEB_SEARCH: | |
status_parts.append("π **Web Search:** Enabled") | |
if ENABLE_VECTOR_RAG: | |
status_parts.append("π **Document RAG:** Enabled") | |
if ACCESS_CODE: | |
status_parts.append("π **Access Control:** Enabled") | |
else: | |
status_parts.append("π **Access:** Public") | |
return "\\n".join(status_parts) | |
# Create interface with access code protection | |
with gr.Blocks(title=SPACE_NAME) as demo: | |
gr.Markdown(f"# {{SPACE_NAME}}") | |
gr.Markdown(SPACE_DESCRIPTION) | |
# Configuration status (always visible) | |
with gr.Accordion("π Configuration Status", open=not API_KEY_VALID): | |
gr.Markdown(get_configuration_status()) | |
# Access code section (shown only if ACCESS_CODE is set) | |
with gr.Column(visible=bool(ACCESS_CODE)) as access_section: | |
gr.Markdown("### π Access Required") | |
gr.Markdown("Please enter the access code provided by your instructor:") | |
access_input = gr.Textbox( | |
label="Access Code", | |
placeholder="Enter access code...", | |
type="password" | |
) | |
access_btn = gr.Button("Submit", variant="primary") | |
access_error = gr.Markdown(visible=False) | |
# Main chat interface (hidden until access granted) | |
with gr.Column(visible=not bool(ACCESS_CODE)) as chat_section: | |
chat_interface = gr.ChatInterface( | |
fn=protected_generate_response, | |
title="", # Title already shown above | |
description="", # Description already shown above | |
examples=None | |
) | |
# Export functionality | |
with gr.Row(): | |
export_btn = gr.Button("Export Conversation", variant="secondary", size="sm") | |
export_file = gr.File(label="Download Conversation", visible=False) | |
# Connect export functionality | |
export_btn.click( | |
export_conversation, | |
inputs=[chat_interface], | |
outputs=[export_file] | |
) | |
# Connect access verification | |
if ACCESS_CODE: | |
access_btn.click( | |
verify_access_code, | |
inputs=[access_input], | |
outputs=[access_error, chat_section, access_granted] | |
) | |
access_input.submit( | |
verify_access_code, | |
inputs=[access_input], | |
outputs=[access_error, chat_section, access_granted] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
''' | |
# Available models - Updated with valid OpenRouter model IDs | |
MODELS = [ | |
"google/gemini-2.0-flash-001", # Fast, reliable, general tasks | |
"anthropic/claude-3.5-haiku", # Complex reasoning and analysis | |
"openai/gpt-4o-mini", # Balanced performance and cost | |
"meta-llama/llama-3.1-8b-instruct", # Open-source, efficient option | |
"mistralai/mistral-7b-instruct" # Good for technical topics | |
] | |
def fetch_url_content(url): | |
"""Fetch and extract text content from a URL - maintained for backward compatibility""" | |
return enhanced_fetch_url_content(url) | |
def get_grounding_context(urls): | |
"""Fetch context from grounding URLs""" | |
if not urls: | |
return "" | |
context_parts = [] | |
for i, url in enumerate(urls, 1): | |
if url and url.strip(): | |
content = fetch_url_content(url.strip()) | |
context_parts.append(f"Context from URL {i} ({url}):\n{content}") | |
if context_parts: | |
return "\n\n" + "\n\n".join(context_parts) + "\n\n" | |
return "" | |
def create_readme(config): | |
"""Generate README with deployment instructions""" | |
return f"""--- | |
title: {config['name']} | |
emoji: π€ | |
colorFrom: blue | |
colorTo: red | |
sdk: gradio | |
sdk_version: 5.35.0 | |
app_file: app.py | |
pinned: false | |
--- | |
# {config['name']} | |
{config['description']} | |
## Quick Deploy to HuggingFace Spaces | |
### Step 1: Create the Space | |
1. Go to https://huggingface.co/spaces | |
2. Click "Create new Space" | |
3. Choose a name for your Space | |
4. Select **Gradio** as the SDK | |
5. Set visibility (Public/Private) | |
6. Click "Create Space" | |
### Step 2: Upload Files | |
1. In your new Space, click "Files" tab | |
2. Upload these files from the zip: | |
- `app.py` | |
- `requirements.txt` | |
3. Wait for "Building" to complete | |
### Step 3: Add API Key | |
1. Go to Settings (gear icon) | |
2. Click "Variables and secrets" | |
3. Click "New secret" | |
4. Name: `{config['api_key_var']}` | |
5. Value: Your OpenRouter API key | |
6. Click "Add" | |
{f'''### Step 4: Configure Access Control | |
Your Space is configured with access code protection. Students will need to enter the access code to use the chatbot. | |
1. Go to Settings (gear icon) | |
2. Click "Variables and secrets" | |
3. Click "New secret" | |
4. Name: `SPACE_ACCESS_CODE` | |
5. Value: `{config['access_code']}` | |
6. Click "Add" | |
**Important**: The access code is now stored securely as an environment variable and is not visible in your app code. | |
To disable access protection: | |
1. Go to Settings β Variables and secrets | |
2. Delete the `SPACE_ACCESS_CODE` secret | |
3. The Space will rebuild automatically with no access protection | |
''' if config['access_code'] else ''} | |
### Step {4 if not config['access_code'] else 5}: Get Your API Key | |
1. Go to https://openrouter.ai/keys | |
2. Sign up/login if needed | |
3. Click "Create Key" | |
4. Copy the key (starts with `sk-or-`) | |
### Step {5 if not config['access_code'] else 6}: Test Your Space | |
- Go back to "App" tab | |
- Your Space should be running! | |
- Try the example prompts or ask a question | |
## Configuration | |
- **Model**: {config['model']} | |
- **Temperature**: {config['temperature']} | |
- **Max Tokens**: {config['max_tokens']} | |
- **API Key Variable**: {config['api_key_var']}""" | |
# Add optional configuration items | |
if config['access_code']: | |
readme_content += f""" | |
- **Access Code**: {config['access_code']} (Students need this to access the chatbot)""" | |
if config.get('enable_dynamic_urls'): | |
readme_content += """ | |
- **Dynamic URL Fetching**: Enabled (Assistant can fetch URLs mentioned in conversations)""" | |
readme_content += f""" | |
## Customization | |
To modify your Space: | |
1. Edit `app.py` in your Space | |
2. Update configuration variables at the top | |
3. Changes deploy automatically | |
## Troubleshooting | |
- **"Please set your {config['api_key_var']}"**: Add the secret in Space settings | |
- **Error 401**: Invalid API key or no credits | |
- **Error 429**: Rate limit - wait and try again | |
- **Build failed**: Check requirements.txt formatting | |
## More Help | |
- HuggingFace Spaces: https://huggingface.co/docs/hub/spaces | |
- OpenRouter Docs: https://openrouter.ai/docs | |
- Gradio Docs: https://gradio.app/docs | |
--- | |
Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} with Chat U/I Helper | |
""" | |
return readme_content | |
def create_requirements(enable_vector_rag=False, enable_web_search=False): | |
"""Generate requirements.txt""" | |
base_requirements = "gradio>=5.35.0\nrequests>=2.32.3\nbeautifulsoup4>=4.12.3" | |
if enable_vector_rag: | |
base_requirements += "\nfaiss-cpu==1.7.4\nnumpy==1.24.3" | |
if enable_web_search: | |
base_requirements += "\ncrawl4ai>=0.2.0\naiohttp>=3.8.0" | |
return base_requirements | |
def generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code="", enable_dynamic_urls=False, url1="", url2="", url3="", url4="", enable_vector_rag=False, rag_data=None, enable_web_search=False): | |
"""Generate deployable zip file""" | |
# Process examples | |
if examples_text and examples_text.strip(): | |
examples_list = [ex.strip() for ex in examples_text.split('\n') if ex.strip()] | |
examples_json = json.dumps(examples_list) | |
else: | |
examples_json = json.dumps([ | |
"Hello! How can you help me?", | |
"Tell me something interesting", | |
"What can you do?" | |
]) | |
# Process grounding URLs | |
grounding_urls = [] | |
for url in [url1, url2, url3, url4]: | |
if url and url.strip(): | |
grounding_urls.append(url.strip()) | |
# Use the provided system prompt directly | |
# Create config | |
config = { | |
'name': name, | |
'description': description, | |
'system_prompt': system_prompt, | |
'model': model, | |
'api_key_var': api_key_var, | |
'temperature': temperature, | |
'max_tokens': int(max_tokens), | |
'examples': examples_json, | |
'grounding_urls': json.dumps(grounding_urls), | |
'access_code': "", # Access code stored in environment variable for security | |
'enable_dynamic_urls': enable_dynamic_urls, | |
'enable_vector_rag': enable_vector_rag, | |
'enable_web_search': enable_web_search, | |
'rag_data_json': json.dumps(rag_data) if rag_data else 'None' | |
} | |
# Generate files | |
app_content = SPACE_TEMPLATE.format(**config) | |
# Pass original access_code to README for documentation | |
readme_config = config.copy() | |
readme_config['access_code'] = access_code or "" | |
readme_content = create_readme(readme_config) | |
requirements_content = create_requirements(enable_vector_rag, enable_web_search) | |
# Create zip file with clean naming | |
filename = f"{name.lower().replace(' ', '_').replace('-', '_')}.zip" | |
# Create zip in memory and save to disk | |
zip_buffer = io.BytesIO() | |
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file: | |
zip_file.writestr('app.py', app_content) | |
zip_file.writestr('requirements.txt', requirements_content) | |
zip_file.writestr('README.md', readme_content) | |
zip_file.writestr('config.json', json.dumps(config, indent=2)) | |
# Write zip to file | |
zip_buffer.seek(0) | |
with open(filename, 'wb') as f: | |
f.write(zip_buffer.getvalue()) | |
return filename | |
# Define callback functions outside the interface | |
def toggle_rag_section(enable_rag): | |
"""Toggle visibility of RAG section""" | |
return gr.update(visible=enable_rag) | |
def process_documents(files, current_rag_tool): | |
"""Process uploaded documents""" | |
if not files: | |
return "Please upload files first", current_rag_tool | |
if not HAS_RAG: | |
return "RAG functionality not available. Please install required dependencies.", current_rag_tool | |
try: | |
# Initialize RAG tool if not exists | |
if not current_rag_tool and RAGTool is not None: | |
current_rag_tool = RAGTool() | |
# Process files | |
result = current_rag_tool.process_uploaded_files(files) | |
if result['success']: | |
# Create status message | |
status_parts = [f"β {result['message']}"] | |
# Add file summary | |
if result['summary']['files_processed']: | |
status_parts.append("\n**Processed files:**") | |
for file_info in result['summary']['files_processed']: | |
status_parts.append(f"- {file_info['name']} ({file_info['chunks']} chunks)") | |
# Add errors if any | |
if result.get('errors'): | |
status_parts.append("\n**Errors:**") | |
for error in result['errors']: | |
status_parts.append(f"- {error['file']}: {error['error']}") | |
# Add index stats | |
if result.get('index_stats'): | |
stats = result['index_stats'] | |
status_parts.append(f"\n**Index stats:** {stats['total_chunks']} chunks, {stats['dimension']}D embeddings") | |
return "\n".join(status_parts), current_rag_tool | |
else: | |
return f"β {result['message']}", current_rag_tool | |
except Exception as e: | |
return f"β Error processing documents: {str(e)}", current_rag_tool | |
def update_sandbox_preview(config_data): | |
"""Update the sandbox preview with generated content""" | |
if not config_data: | |
return "Generate a space configuration to see preview here.", "<div style='text-align: center; padding: 50px; color: #666;'>No preview available</div>" | |
# Create preview info | |
preview_text = f"""**Space Configuration:** | |
- **Name:** {config_data.get('name', 'N/A')} | |
- **Model:** {config_data.get('model', 'N/A')} | |
- **Temperature:** {config_data.get('temperature', 'N/A')} | |
- **Max Tokens:** {config_data.get('max_tokens', 'N/A')} | |
- **Dynamic URLs:** {'β Enabled' if config_data.get('enable_dynamic_urls') else 'β Disabled'} | |
- **Vector RAG:** {'β Enabled' if config_data.get('enable_vector_rag') else 'β Disabled'} | |
**System Prompt Preview:** | |
``` | |
{config_data.get('system_prompt', 'No system prompt configured')[:500]}{'...' if len(config_data.get('system_prompt', '')) > 500 else ''} | |
``` | |
**Deployment Package:** `{config_data.get('filename', 'Not generated')}`""" | |
# Create a basic HTML preview of the chat interface | |
preview_html = f""" | |
<div style="border: 1px solid #ddd; border-radius: 8px; padding: 20px; background: #f9f9f9;"> | |
<h3 style="margin-top: 0; color: #333;">{config_data.get('name', 'Chat Interface')}</h3> | |
<p style="color: #666; margin-bottom: 20px;">{config_data.get('description', 'A customizable AI chat interface')}</p> | |
<div style="border: 1px solid #ccc; border-radius: 4px; background: white; min-height: 200px; padding: 15px; margin-bottom: 15px;"> | |
<div style="color: #888; text-align: center; padding: 50px 0;">Chat Interface Preview</div> | |
<div style="background: #f0f8ff; padding: 10px; border-radius: 4px; margin-bottom: 10px; border-left: 3px solid #0066cc;"> | |
<strong>Assistant:</strong> Hello! I'm ready to help you. How can I assist you today? | |
</div> | |
</div> | |
<div style="border: 1px solid #ccc; border-radius: 4px; padding: 10px; background: white;"> | |
<input type="text" placeholder="Type your message here..." style="width: 70%; padding: 8px; border: 1px solid #ddd; border-radius: 4px; margin-right: 10px;"> | |
<button style="padding: 8px 15px; background: #0066cc; color: white; border: none; border-radius: 4px; cursor: pointer;">Send</button> | |
</div> | |
<div style="margin-top: 15px; padding: 10px; background: #f0f0f0; border-radius: 4px; font-size: 12px; color: #666;"> | |
<strong>Configuration:</strong> Model: {config_data.get('model', 'N/A')} | Temperature: {config_data.get('temperature', 'N/A')} | Max Tokens: {config_data.get('max_tokens', 'N/A')} | |
</div> | |
</div> | |
""" | |
return preview_text, preview_html | |
def on_preview_combined(name, description, system_prompt, enable_research_assistant, model, temperature, max_tokens, examples_text, enable_dynamic_urls, enable_vector_rag, enable_web_search): | |
"""Generate configuration and return preview updates""" | |
if not name or not name.strip(): | |
return ( | |
{}, | |
gr.update(value="**Error:** Please provide a Space Title to preview", visible=True), | |
gr.update(visible=False), | |
gr.update(value="Configuration will appear here after preview generation.") | |
) | |
try: | |
# Use the system prompt directly (research assistant toggle already updates it) | |
if not system_prompt or not system_prompt.strip(): | |
return ( | |
{}, | |
gr.update(value="**Error:** Please provide a System Prompt for the assistant", visible=True), | |
gr.update(visible=False), | |
gr.update(value="Configuration will appear here after preview generation.") | |
) | |
final_system_prompt = system_prompt.strip() | |
# Create configuration for preview | |
config_data = { | |
'name': name, | |
'description': description, | |
'system_prompt': final_system_prompt, | |
'model': model, | |
'temperature': temperature, | |
'max_tokens': max_tokens, | |
'enable_dynamic_urls': enable_dynamic_urls, | |
'enable_vector_rag': enable_vector_rag, | |
'enable_web_search': enable_web_search, | |
'examples_text': examples_text, | |
'preview_ready': True | |
} | |
# Generate preview displays | |
preview_text = f"""π **Preview Successfully Rendered!** | |
Your assistant "{name}" is now configured and ready to test in the Sandbox Preview tab. | |
**Configuration:** | |
- **Model:** {model} | |
- **Temperature:** {temperature} | |
- **Max Tokens:** {max_tokens} | |
- **Dynamic URLs:** {'β Enabled' if enable_dynamic_urls else 'β Disabled'} | |
- **Vector RAG:** {'β Enabled' if enable_vector_rag else 'β Disabled'} | |
- **Web Search:** {'β Enabled' if enable_web_search else 'β Disabled'} | |
**System Prompt:** | |
{final_system_prompt[:200]}{'...' if len(final_system_prompt) > 200 else ''} | |
β¨ **Next Steps:** Switch to the "Sandbox Preview" tab to test your assistant with real conversations before generating the deployment package.""" | |
config_display = f"""### Current Configuration | |
**Space Details:** | |
- **Name:** {name} | |
- **Description:** {description or 'No description provided'} | |
**Model Settings:** | |
- **Model:** {model} | |
- **Temperature:** {temperature} | |
- **Max Response Tokens:** {max_tokens} | |
**Features:** | |
- **Dynamic URL Fetching:** {'β Enabled' if enable_dynamic_urls else 'β Disabled'} | |
- **Document RAG:** {'β Enabled' if enable_vector_rag else 'β Disabled'} | |
- **Web Search:** {'β Enabled' if enable_web_search else 'β Disabled'} | |
**System Prompt:** | |
``` | |
{final_system_prompt} | |
``` | |
**Example Prompts:** | |
{examples_text if examples_text and examples_text.strip() else 'No example prompts configured'} | |
""" | |
return ( | |
config_data, | |
gr.update(value=preview_text, visible=True), | |
gr.update(visible=True), | |
gr.update(value=config_display) | |
) | |
except Exception as e: | |
return ( | |
{}, | |
gr.update(value=f"**Error:** {str(e)}", visible=True), | |
gr.update(visible=False), | |
gr.update(value="Configuration will appear here after preview generation.") | |
) | |
def update_preview_display(config_data): | |
"""Update preview display based on config data""" | |
if not config_data or not config_data.get('preview_ready'): | |
return ( | |
gr.update(value="**Status:** Configure your space in the Configuration tab and click 'Preview Deployment Package' to see your assistant here.", visible=True), | |
gr.update(visible=False), | |
gr.update(value="Configuration will appear here after preview generation.") | |
) | |
preview_text = f"""**Preview Ready!** | |
Your assistant "{config_data['name']}" is configured and ready to test. | |
**Configuration:** | |
- **Model:** {config_data['model']} | |
- **Temperature:** {config_data['temperature']} | |
- **Max Tokens:** {config_data['max_tokens']} | |
- **Dynamic URLs:** {'β Enabled' if config_data['enable_dynamic_urls'] else 'β Disabled'} | |
- **Vector RAG:** {'β Enabled' if config_data['enable_vector_rag'] else 'β Disabled'} | |
**System Prompt:** | |
{config_data['system_prompt'][:200]}{'...' if len(config_data['system_prompt']) > 200 else ''} | |
Use the chat interface below to test your assistant before generating the deployment package.""" | |
config_display = f"""### Current Configuration | |
**Space Details:** | |
- **Name:** {config_data['name']} | |
- **Description:** {config_data.get('description', 'No description provided')} | |
**Model Settings:** | |
- **Model:** {config_data['model']} | |
- **Temperature:** {config_data['temperature']} | |
- **Max Response Tokens:** {config_data['max_tokens']} | |
**Features:** | |
- **Dynamic URL Fetching:** {'β Enabled' if config_data['enable_dynamic_urls'] else 'β Disabled'} | |
- **Document RAG:** {'β Enabled' if config_data['enable_vector_rag'] else 'β Disabled'} | |
**System Prompt:** | |
``` | |
{config_data['system_prompt']} | |
``` | |
**Example Prompts:** | |
{config_data.get('examples_text', 'No example prompts configured') if config_data.get('examples_text', '').strip() else 'No example prompts configured'} | |
""" | |
return ( | |
gr.update(value=preview_text, visible=True), | |
gr.update(visible=True), | |
gr.update(value=config_display) | |
) | |
def preview_chat_response(message, history, config_data, url1="", url2="", url3="", url4=""): | |
"""Generate response for preview chat using actual OpenRouter API""" | |
if not config_data or not message: | |
return "", history | |
# Get API key from environment | |
api_key = os.environ.get("OPENROUTER_API_KEY") | |
if not api_key: | |
response = f"""π **API Key Required for Preview** | |
To test your assistant with real API responses, please: | |
1. Get your OpenRouter API key from: https://openrouter.ai/keys | |
2. Set it as an environment variable: `export OPENROUTER_API_KEY=your_key_here` | |
3. Or add it to your `.env` file: `OPENROUTER_API_KEY=your_key_here` | |
**Your Configuration:** | |
- **Name:** {config_data.get('name', 'your assistant')} | |
- **Model:** {config_data.get('model', 'unknown model')} | |
- **Temperature:** {config_data.get('temperature', 0.7)} | |
- **Max Tokens:** {config_data.get('max_tokens', 500)} | |
**System Prompt Preview:** | |
{config_data.get('system_prompt', '')[:200]}{'...' if len(config_data.get('system_prompt', '')) > 200 else ''} | |
Once you set your API key, you'll be able to test real conversations in this preview.""" | |
history.append({"role": "user", "content": message}) | |
history.append({"role": "assistant", "content": response}) | |
return "", history | |
try: | |
# Get grounding context from URLs if configured | |
grounding_urls = [url1, url2, url3, url4] | |
grounding_context = get_cached_grounding_context([url for url in grounding_urls if url and url.strip()]) | |
# Add RAG context if available (simplified for preview) | |
rag_context = "" | |
if config_data.get('enable_vector_rag'): | |
rag_context = "\n\n[RAG context would be retrieved here based on similarity search]\n\n" | |
# If dynamic URLs are enabled, check message for URLs to fetch | |
dynamic_context = "" | |
if config_data.get('enable_dynamic_urls'): | |
urls_in_message = extract_urls_from_text(message) | |
if urls_in_message: | |
dynamic_context_parts = [] | |
for url in urls_in_message[:3]: # Increased limit to 3 URLs with enhanced processing | |
content = enhanced_fetch_url_content(url) | |
dynamic_context_parts.append(f"\n\nDynamic context from {url}:\n{content}") | |
if dynamic_context_parts: | |
dynamic_context = "\n".join(dynamic_context_parts) | |
# Check for web search request if enabled | |
web_search_result = "" | |
if config_data.get('enable_web_search'): | |
# If web search is enabled, use it for most queries (excluding code blocks and URLs) | |
should_search = True | |
# Skip search for messages that are primarily code blocks | |
if re.search(r'```[\s\S]*```', message): | |
should_search = False | |
# Skip search for messages that are primarily URLs | |
urls_in_message = extract_urls_from_text(message) | |
if urls_in_message and len(' '.join(urls_in_message)) > len(message) * 0.5: | |
should_search = False | |
# Skip search for very short messages (likely greetings) | |
if len(message.strip()) < 5: | |
should_search = False | |
if should_search: | |
# Use the entire message as search query, cleaning it up | |
search_query = message.strip() | |
search_result = perform_web_search(search_query, "Web search requested") | |
web_search_result = f"\n\n{search_result}\n\n" | |
# Build enhanced system prompt with all contexts | |
enhanced_system_prompt = config_data.get('system_prompt', '') + grounding_context + rag_context + dynamic_context + web_search_result | |
# Build messages array for the API | |
messages = [{"role": "system", "content": enhanced_system_prompt}] | |
# Add conversation history - handle both formats for backwards compatibility | |
for chat in history: | |
if isinstance(chat, dict): | |
# New format: {"role": "user", "content": "..."} | |
messages.append(chat) | |
elif isinstance(chat, list) and len(chat) >= 2: | |
# Legacy format: [user_msg, assistant_msg] | |
user_msg, assistant_msg = chat[0], chat[1] | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Add current message | |
messages.append({"role": "user", "content": message}) | |
# Debug: Log the request being sent | |
request_payload = { | |
"model": config_data.get('model', 'google/gemini-2.0-flash-001'), | |
"messages": messages, | |
"temperature": config_data.get('temperature', 0.7), | |
"max_tokens": config_data.get('max_tokens', 500), | |
"tools": None # Explicitly disable tool/function calling | |
} | |
# Make API request to OpenRouter | |
response = requests.post( | |
url="https://openrouter.ai/api/v1/chat/completions", | |
headers={ | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
}, | |
json=request_payload, | |
timeout=30 | |
) | |
if response.status_code == 200: | |
try: | |
response_data = response.json() | |
# Check if response has expected structure | |
if 'choices' not in response_data or not response_data['choices']: | |
assistant_response = f"[Preview Debug] No choices in API response. Response: {response_data}" | |
elif 'message' not in response_data['choices'][0]: | |
assistant_response = f"[Preview Debug] No message in first choice. Response: {response_data}" | |
elif 'content' not in response_data['choices'][0]['message']: | |
assistant_response = f"[Preview Debug] No content in message. Response: {response_data}" | |
else: | |
assistant_content = response_data['choices'][0]['message']['content'] | |
# Debug: Check if content is empty | |
if not assistant_content or assistant_content.strip() == "": | |
assistant_response = f"[Preview Debug] Empty content from API. Messages sent: {len(messages)} messages, last user message: '{message}', model: {request_payload['model']}" | |
else: | |
# Use the content directly - no preview indicator needed | |
assistant_response = assistant_content | |
except (KeyError, IndexError, json.JSONDecodeError) as e: | |
assistant_response = f"[Preview Error] Failed to parse API response: {str(e)}. Raw response: {response.text[:500]}" | |
else: | |
assistant_response = f"[Preview Error] API Error: {response.status_code} - {response.text[:500]}" | |
except Exception as e: | |
assistant_response = f"[Preview Error] {str(e)}" | |
# Return in the new messages format for Gradio 5.x | |
history.append({"role": "user", "content": message}) | |
history.append({"role": "assistant", "content": assistant_response}) | |
return "", history | |
def clear_preview_chat(): | |
"""Clear preview chat""" | |
return "", [] | |
def export_preview_conversation(history): | |
"""Export preview conversation to markdown""" | |
if not history: | |
return gr.update(visible=False) | |
markdown_content = export_conversation_to_markdown(history) | |
# Save to temporary file | |
import tempfile | |
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False) as f: | |
f.write(markdown_content) | |
temp_file = f.name | |
return gr.update(value=temp_file, visible=True) | |
def on_generate(name, description, system_prompt, enable_research_assistant, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_tool_state, enable_web_search): | |
if not name or not name.strip(): | |
return gr.update(value="Error: Please provide a Space Title", visible=True), gr.update(visible=False), {} | |
try: | |
# Get RAG data if enabled | |
rag_data = None | |
if enable_vector_rag and rag_tool_state: | |
rag_data = rag_tool_state.get_serialized_data() | |
# Use the system prompt directly (research assistant toggle already updates it) | |
if not system_prompt or not system_prompt.strip(): | |
return gr.update(value="Error: Please provide a System Prompt for the assistant", visible=True), gr.update(visible=False), {} | |
final_system_prompt = system_prompt.strip() | |
filename = generate_zip(name, description, final_system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_data, enable_web_search) | |
success_msg = f"""**Deployment package ready!** | |
**File**: `{filename}` | |
**What's included:** | |
- `app.py` - Ready-to-deploy chat interface | |
- `requirements.txt` - Dependencies | |
- `README.md` - Step-by-step deployment guide | |
- `config.json` - Configuration backup | |
**Next steps:** | |
1. Download the zip file below | |
2. Follow the README instructions to deploy on HuggingFace Spaces | |
3. Set your `{api_key_var}` secret in Space settings | |
**Your Space will be live in minutes!**""" | |
# Update sandbox preview | |
config_data = { | |
'name': name, | |
'description': description, | |
'system_prompt': final_system_prompt, | |
'model': model, | |
'temperature': temperature, | |
'max_tokens': max_tokens, | |
'enable_dynamic_urls': enable_dynamic_urls, | |
'enable_vector_rag': enable_vector_rag, | |
'enable_web_search': enable_web_search, | |
'filename': filename | |
} | |
return gr.update(value=success_msg, visible=True), gr.update(value=filename, visible=True), config_data | |
except Exception as e: | |
return gr.update(value=f"Error: {str(e)}", visible=True), gr.update(visible=False), {} | |
# Global cache for URL content to avoid re-crawling | |
url_content_cache = {} | |
def get_cached_grounding_context(urls): | |
"""Get grounding context with caching to avoid re-crawling same URLs""" | |
if not urls: | |
return "" | |
# Filter valid URLs | |
valid_urls = [url for url in urls if url and url.strip()] | |
if not valid_urls: | |
return "" | |
# Create cache key from sorted URLs | |
cache_key = tuple(sorted(valid_urls)) | |
# Check if we already have this content cached | |
if cache_key in url_content_cache: | |
return url_content_cache[cache_key] | |
# If not cached, fetch using simple HTTP requests | |
grounding_context = get_grounding_context_simple(valid_urls) | |
# Cache the result | |
url_content_cache[cache_key] = grounding_context | |
return grounding_context | |
def respond_with_cache_update(message, chat_history, url1="", url2="", url3="", url4=""): | |
"""Wrapper that updates cache status after responding""" | |
msg, history = respond(message, chat_history, url1, url2, url3, url4) | |
cache_status = get_cache_status() | |
return msg, history, cache_status | |
def respond(message, chat_history, url1="", url2="", url3="", url4=""): | |
# Make actual API request to OpenRouter | |
import os | |
import requests | |
# Get API key from environment | |
api_key = os.environ.get("OPENROUTER_API_KEY") | |
if not api_key: | |
response = "Please set your OPENROUTER_API_KEY in the Space settings to use the chat support." | |
chat_history.append({"role": "user", "content": message}) | |
chat_history.append({"role": "assistant", "content": response}) | |
return "", chat_history | |
# Get grounding context from URLs using cached approach | |
grounding_urls = [url1, url2, url3, url4] | |
grounding_context = get_cached_grounding_context(grounding_urls) | |
# Build enhanced system prompt with grounding context | |
base_system_prompt = """You are an expert assistant specializing in Gradio configurations for HuggingFace Spaces. You have deep knowledge of: | |
- Gradio interface components and layouts | |
- HuggingFace Spaces configuration (YAML frontmatter, secrets, environment variables) | |
- Deployment best practices for Gradio apps on HuggingFace | |
- Space settings, SDK versions, and hardware requirements | |
- Troubleshooting common Gradio and HuggingFace Spaces issues | |
- Integration with various APIs and models through Gradio interfaces | |
Provide specific, technical guidance focused on Gradio implementation details and HuggingFace Spaces deployment. Include code examples when relevant. Keep responses concise and actionable.""" | |
enhanced_system_prompt = base_system_prompt + grounding_context | |
# Build conversation history for API | |
messages = [{ | |
"role": "system", | |
"content": enhanced_system_prompt | |
}] | |
# Add conversation history - Support both new messages format and legacy tuple format | |
for chat in chat_history: | |
if isinstance(chat, dict): | |
# New format: {"role": "user", "content": "..."} | |
messages.append(chat) | |
elif isinstance(chat, (list, tuple)) and len(chat) >= 2: | |
# Legacy format: ("user msg", "bot msg") | |
user_msg, assistant_msg = chat[0], chat[1] | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Add current message | |
messages.append({"role": "user", "content": message}) | |
try: | |
# Make API request to OpenRouter | |
response = requests.post( | |
url="https://openrouter.ai/api/v1/chat/completions", | |
headers={ | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
}, | |
json={ | |
"model": "google/gemini-2.0-flash-001", | |
"messages": messages, | |
"temperature": 0.7, | |
"max_tokens": 500 | |
} | |
) | |
if response.status_code == 200: | |
assistant_response = response.json()['choices'][0]['message']['content'] | |
else: | |
assistant_response = f"Error: {response.status_code} - {response.text}" | |
except Exception as e: | |
assistant_response = f"Error: {str(e)}" | |
chat_history.append({"role": "user", "content": message}) | |
chat_history.append({"role": "assistant", "content": assistant_response}) | |
return "", chat_history | |
def clear_chat(): | |
return "", [] | |
def clear_url_cache(): | |
"""Clear the URL content cache""" | |
global url_content_cache | |
url_content_cache.clear() | |
return "β URL cache cleared. Next request will re-fetch content." | |
def get_cache_status(): | |
"""Get current cache status""" | |
if not url_content_cache: | |
return "π No URLs cached" | |
return f"πΎ {len(url_content_cache)} URL set(s) cached" | |
def add_urls(count): | |
"""Show additional URL fields""" | |
if count == 2: | |
return (gr.update(visible=True), gr.update(visible=False), | |
gr.update(value="+ Add URLs"), gr.update(visible=True), 3) | |
elif count == 3: | |
return (gr.update(visible=True), gr.update(visible=True), | |
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4) | |
else: | |
return (gr.update(), gr.update(), gr.update(), gr.update(), count) | |
def remove_urls(count): | |
"""Hide URL fields""" | |
if count == 4: | |
return (gr.update(visible=True), gr.update(visible=False, value=""), | |
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3) | |
elif count == 3: | |
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""), | |
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2) | |
else: | |
return (gr.update(), gr.update(), gr.update(), gr.update(), count) | |
def add_chat_urls(count): | |
"""Show additional chat URL fields""" | |
if count == 2: | |
return (gr.update(visible=True), gr.update(visible=False), | |
gr.update(value="+ Add URLs"), gr.update(visible=True), 3) | |
elif count == 3: | |
return (gr.update(visible=True), gr.update(visible=True), | |
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4) | |
else: | |
return (gr.update(), gr.update(), gr.update(), gr.update(), count) | |
def remove_chat_urls(count): | |
"""Hide chat URL fields""" | |
if count == 4: | |
return (gr.update(visible=True), gr.update(visible=False, value=""), | |
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3) | |
elif count == 3: | |
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""), | |
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2) | |
else: | |
return (gr.update(), gr.update(), gr.update(), gr.update(), count) | |
# Code execution toggle removed - functionality no longer supported | |
def toggle_web_search(enable_search): | |
"""Toggle visibility of web search space field""" | |
return gr.update(visible=enable_search) | |
def perform_web_search(query, description="Web search"): | |
"""Perform web search using crawl4ai with DuckDuckGo""" | |
try: | |
# Try to use crawl4ai for web search | |
try: | |
from crawl4ai import WebCrawler | |
import asyncio | |
async def search_with_crawl4ai(search_query): | |
# Create search URL for DuckDuckGo | |
import urllib.parse | |
encoded_query = urllib.parse.quote_plus(search_query) | |
search_url = f"https://duckduckgo.com/html/?q={encoded_query}" | |
# Initialize crawler | |
crawler = WebCrawler(verbose=False) | |
try: | |
# Start the crawler | |
await crawler.astart() | |
# Crawl the search results | |
result = await crawler.arun(url=search_url) | |
if result.success: | |
# Extract text content from search results | |
content = result.cleaned_html if result.cleaned_html else result.markdown | |
# Clean and truncate the content | |
if content: | |
# Remove excessive whitespace and limit length | |
lines = [line.strip() for line in content.split('\n') if line.strip()] | |
cleaned_content = '\n'.join(lines) | |
# Truncate to reasonable length for context | |
if len(cleaned_content) > 3000: | |
cleaned_content = cleaned_content[:3000] + "..." | |
return cleaned_content | |
else: | |
return "No content extracted from search results" | |
else: | |
return f"Search failed: {result.error_message if hasattr(result, 'error_message') else 'Unknown error'}" | |
finally: | |
# Clean up the crawler | |
await crawler.aclose() | |
# Run the async search | |
if hasattr(asyncio, 'run'): | |
search_result = asyncio.run(search_with_crawl4ai(query)) | |
else: | |
# Fallback for older Python versions | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
try: | |
search_result = loop.run_until_complete(search_with_crawl4ai(query)) | |
finally: | |
loop.close() | |
return f"**{description}**\n\nQuery: {query}\n\n**Search Results:**\n{search_result}" | |
except ImportError: | |
# Fallback to simple DuckDuckGo search without crawl4ai | |
import urllib.parse | |
encoded_query = urllib.parse.quote_plus(query) | |
search_url = f"https://duckduckgo.com/html/?q={encoded_query}" | |
# Use enhanced_fetch_url_content as fallback | |
content = enhanced_fetch_url_content(search_url) | |
return f"**{description} (Simplified)**\n\nQuery: {query}\n\n**Search Results:**\n{content}" | |
except Exception as e: | |
# Final fallback to URL extraction if search fails | |
urls = extract_urls_from_text(query) | |
if urls: | |
results = [] | |
for url in urls[:2]: # Limit to 2 URLs for fallback | |
content = enhanced_fetch_url_content(url) | |
results.append(f"Content from {url}:\n{content[:500]}...") | |
return f"**Web Search Fallback:** {description}\n\n" + "\n\n".join(results) | |
return f"**Web Search Error:** {str(e)}\n\nQuery: {query}" | |
# Code execution functionality removed - no longer supported | |
def toggle_research_assistant(enable_research): | |
"""Toggle research assistant system prompt""" | |
if enable_research: | |
combined_prompt = "You are an advanced research assistant specializing in academic literature search and analysis. Your expertise includes finding peer-reviewed sources, critically evaluating research methodology, synthesizing insights across multiple papers, and providing properly formatted citations. When responding, ground all claims in specific sources from provided URL contexts, distinguish between direct evidence and analytical interpretation, and highlight any limitations or conflicting findings. Use clear, accessible language that makes complex research understandable, and suggest related areas of inquiry when relevant. Your goal is to be a knowledgeable research partner who helps users navigate academic information with precision and clarity." | |
return ( | |
gr.update(value=combined_prompt), # Update main system prompt | |
gr.update(value=True) # Enable dynamic URL fetching for research template | |
) | |
else: | |
return ( | |
gr.update(value=""), # Clear main system prompt when disabling | |
gr.update(value=False) # Disable dynamic URL setting | |
) | |
# Create Gradio interface with proper tab structure and fixed configuration | |
with gr.Blocks( | |
title="Chat U/I Helper", | |
css=""" | |
/* Custom CSS to fix styling issues */ | |
.gradio-container { | |
max-width: 1200px !important; | |
margin: 0 auto; | |
} | |
/* Fix tab styling */ | |
.tab-nav { | |
border-bottom: 1px solid #e0e0e0; | |
} | |
/* Fix button styling */ | |
.btn { | |
border-radius: 6px; | |
} | |
/* Fix chat interface styling */ | |
.chat-interface { | |
border-radius: 8px; | |
border: 1px solid #e0e0e0; | |
} | |
/* Hide gradio footer to avoid manifest issues */ | |
.gradio-footer { | |
display: none !important; | |
} | |
/* Fix accordion styling */ | |
.accordion { | |
border: 1px solid #e0e0e0; | |
border-radius: 6px; | |
} | |
""", | |
theme=gr.themes.Default(), | |
head=""" | |
<style> | |
/* Additional head styles to prevent manifest issues */ | |
.gradio-app { | |
background: #ffffff; | |
} | |
</style> | |
""", | |
js=""" | |
function() { | |
// Prevent manifest.json requests and other common errors | |
if (typeof window !== 'undefined') { | |
// Override fetch to handle manifest.json requests | |
const originalFetch = window.fetch; | |
window.fetch = function(url, options) { | |
// Handle both string URLs and URL objects | |
const urlString = typeof url === 'string' ? url : url.toString(); | |
if (urlString.includes('manifest.json')) { | |
return Promise.resolve(new Response('{}', { | |
status: 200, | |
headers: { 'Content-Type': 'application/json' } | |
})); | |
} | |
// Handle favicon requests | |
if (urlString.includes('favicon.ico')) { | |
return Promise.resolve(new Response('', { status: 204 })); | |
} | |
return originalFetch.apply(this, arguments); | |
}; | |
// Prevent postMessage origin errors | |
window.addEventListener('message', function(event) { | |
try { | |
if (event.origin && event.origin !== window.location.origin) { | |
event.stopImmediatePropagation(); | |
return false; | |
} | |
} catch (e) { | |
// Silently ignore origin check errors | |
} | |
}, true); | |
// Prevent console errors from missing resources | |
window.addEventListener('error', function(e) { | |
if (e.target && e.target.src) { | |
const src = e.target.src; | |
if (src.includes('manifest.json') || src.includes('favicon.ico')) { | |
e.preventDefault(); | |
return false; | |
} | |
} | |
}, true); | |
// Override console.error to filter out known harmless errors | |
const originalConsoleError = console.error; | |
console.error = function(...args) { | |
const message = args.join(' '); | |
if (message.includes('manifest.json') || | |
message.includes('favicon.ico') || | |
message.includes('postMessage') || | |
message.includes('target origin')) { | |
return; // Suppress these specific errors | |
} | |
originalConsoleError.apply(console, arguments); | |
}; | |
} | |
} | |
""" | |
) as demo: | |
# Global state for cross-tab functionality | |
sandbox_state = gr.State({}) | |
preview_config_state = gr.State({}) | |
# Global status components that will be defined later | |
preview_status = None | |
preview_chat_section = None | |
config_display = None | |
with gr.Tabs(): | |
with gr.Tab("Configuration"): | |
gr.Markdown("# Spaces Configuration") | |
gr.Markdown("Convert custom assistants from HuggingChat into chat interfaces with HuggingFace Spaces. Configure and download everything needed to deploy a simple HF space using Gradio.") | |
with gr.Column(): | |
name = gr.Textbox( | |
label="Space Title", | |
placeholder="My Course Helper", | |
value="My Custom Space" | |
) | |
description = gr.Textbox( | |
label="Space Description", | |
placeholder="A customizable AI chat interface for...", | |
lines=2, | |
value="" | |
) | |
model = gr.Dropdown( | |
label="Model", | |
choices=MODELS, | |
value=MODELS[0], | |
info="Choose based on the context and purposes of your space" | |
) | |
api_key_var = gr.Textbox( | |
label="API Key Variable Name", | |
value="OPENROUTER_API_KEY", | |
info="Name for the secret in HuggingFace Space settings" | |
) | |
access_code = gr.Textbox( | |
label="Access Code (Optional)", | |
placeholder="Leave empty for public access, or enter code for student access", | |
info="If set, students must enter this code to access the chatbot", | |
type="password" | |
) | |
with gr.Accordion("Assistant Configuration", open=True): | |
gr.Markdown("### Configure your assistant's behavior and capabilities") | |
gr.Markdown("Define the system prompt and assistant settings. You can use pre-configured templates or custom fields.") | |
# Main system prompt field - always visible | |
system_prompt = gr.Textbox( | |
label="System Prompt", | |
placeholder="You are a helpful assistant that...", | |
lines=4, | |
value="", | |
info="Define the assistant's role, purpose, and behavior in a single prompt" | |
) | |
# Assistant configuration options | |
enable_research_assistant = gr.Checkbox( | |
label="Research Template", | |
value=False, | |
info="Enable to use pre-configured research assistant settings" | |
) | |
examples_text = gr.Textbox( | |
label="Example Prompts (one per line)", | |
placeholder="Can you analyze this research paper: https://example.com/paper.pdf\nWhat are the latest findings on climate change adaptation?\nHelp me fact-check claims about renewable energy efficiency", | |
lines=3, | |
info="These will appear as clickable examples in the chat interface" | |
) | |
with gr.Accordion("Tool Settings", open=True): | |
enable_dynamic_urls = gr.Checkbox( | |
label="Enable Dynamic URL Fetching", | |
value=True, # Enabled by default | |
info="Allow the assistant to fetch additional URLs mentioned in conversations (enabled by default)", | |
visible=False # Hidden since it's always enabled | |
) | |
enable_web_search = gr.Checkbox( | |
label="Enable Web Search", | |
value=False, | |
info="Allow the assistant to search the web using crawl4ai" | |
) | |
web_search_space = gr.Textbox( | |
label="Web Search Technology", | |
value="crawl4ai", | |
info="Uses crawl4ai library for web crawling", | |
visible=False, | |
interactive=False | |
) | |
enable_vector_rag = gr.Checkbox( | |
label="Enable Document RAG", | |
value=False, | |
info="Upload documents for context-aware responses (PDF, DOCX, TXT, MD)", | |
visible=HAS_RAG | |
) | |
with gr.Column(visible=False) as rag_section: | |
gr.Markdown("### Document Upload") | |
file_upload = gr.File( | |
label="Upload Documents", | |
file_types=[".pdf", ".docx", ".txt", ".md"], | |
file_count="multiple" | |
) | |
process_btn = gr.Button("Process Documents", variant="secondary") | |
rag_status = gr.Markdown() | |
# State to store RAG tool | |
rag_tool_state = gr.State(None) | |
with gr.Accordion("URL Grounding (Optional)", open=False): | |
gr.Markdown("Add URLs to provide context. Content will be fetched and added to the system prompt.") | |
# Initial URL fields | |
url1 = gr.Textbox( | |
label="URL 1", | |
placeholder="https://example.com/page1", | |
info="First URL for context grounding" | |
) | |
url2 = gr.Textbox( | |
label="URL 2", | |
placeholder="https://example.com/page2", | |
info="Second URL for context grounding" | |
) | |
# Additional URL fields (initially hidden) | |
url3 = gr.Textbox( | |
label="URL 3", | |
placeholder="https://example.com/page3", | |
info="Third URL for context grounding", | |
visible=False | |
) | |
url4 = gr.Textbox( | |
label="URL 4", | |
placeholder="https://example.com/page4", | |
info="Fourth URL for context grounding", | |
visible=False | |
) | |
# URL management buttons | |
with gr.Row(): | |
add_url_btn = gr.Button("+ Add URLs", size="sm") | |
remove_url_btn = gr.Button("- Remove URLs", size="sm", visible=False) | |
url_count = gr.State(2) # Track number of visible URLs | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0, | |
maximum=2, | |
value=0.7, | |
step=0.1, | |
info="Higher = more creative, Lower = more focused" | |
) | |
max_tokens = gr.Slider( | |
label="Max Response Tokens", | |
minimum=50, | |
maximum=4096, | |
value=500, | |
step=50 | |
) | |
with gr.Row(): | |
preview_btn = gr.Button("Preview Deployment Package", variant="secondary") | |
generate_btn = gr.Button("Generate Deployment Package", variant="primary") | |
status = gr.Markdown(visible=False) | |
download_file = gr.File(label="Download your zip package", visible=False) | |
# Connect the research assistant checkbox | |
enable_research_assistant.change( | |
toggle_research_assistant, | |
inputs=[enable_research_assistant], | |
outputs=[system_prompt, enable_dynamic_urls] | |
) | |
# Connect the web search checkbox | |
enable_web_search.change( | |
toggle_web_search, | |
inputs=[enable_web_search], | |
outputs=[web_search_space] | |
) | |
# Connect the URL management buttons | |
add_url_btn.click( | |
add_urls, | |
inputs=[url_count], | |
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count] | |
) | |
remove_url_btn.click( | |
remove_urls, | |
inputs=[url_count], | |
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count] | |
) | |
# Connect RAG functionality | |
enable_vector_rag.change( | |
toggle_rag_section, | |
inputs=[enable_vector_rag], | |
outputs=[rag_section] | |
) | |
process_btn.click( | |
process_documents, | |
inputs=[file_upload, rag_tool_state], | |
outputs=[rag_status, rag_tool_state] | |
) | |
# Connect the generate button | |
generate_btn.click( | |
on_generate, | |
inputs=[name, description, system_prompt, enable_research_assistant, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_tool_state, enable_web_search], | |
outputs=[status, download_file, sandbox_state] | |
) | |
with gr.Tab("Preview"): | |
gr.Markdown("# Sandbox Preview") | |
gr.Markdown("Preview your generated assistant exactly as it will appear in the deployed HuggingFace Space.") | |
with gr.Column(): | |
# Preview status - assign to global variable | |
preview_status_comp = gr.Markdown("**Status:** Configure your space in the Configuration tab and click 'Preview Deployment Package' to see your assistant here.", visible=True) | |
# Simulated chat interface for preview | |
with gr.Column(visible=False) as preview_chat_section_comp: | |
preview_chatbot = gr.Chatbot( | |
value=[], | |
label="Preview Chat Interface", | |
height=400, | |
type="messages" # Use the new messages format | |
) | |
preview_msg = gr.Textbox( | |
label="Test your assistant", | |
placeholder="Type a message to test your assistant...", | |
lines=2 | |
) | |
# URL context fields for preview testing | |
with gr.Accordion("Test URL Context (Optional)", open=False): | |
gr.Markdown("Add URLs to test context grounding in the preview") | |
with gr.Row(): | |
preview_url1 = gr.Textbox( | |
label="URL 1", | |
placeholder="https://example.com/page1", | |
scale=1 | |
) | |
preview_url2 = gr.Textbox( | |
label="URL 2", | |
placeholder="https://example.com/page2", | |
scale=1 | |
) | |
with gr.Row(): | |
preview_url3 = gr.Textbox( | |
label="URL 3", | |
placeholder="https://example.com/page3", | |
scale=1, | |
visible=False | |
) | |
preview_url4 = gr.Textbox( | |
label="URL 4", | |
placeholder="https://example.com/page4", | |
scale=1, | |
visible=False | |
) | |
# URL management for preview | |
with gr.Row(): | |
preview_add_url_btn = gr.Button("+ Add URLs", size="sm") | |
preview_remove_url_btn = gr.Button("- Remove URLs", size="sm", visible=False) | |
preview_url_count = gr.State(2) | |
with gr.Row(): | |
preview_send = gr.Button("Send", variant="primary") | |
preview_clear = gr.Button("Clear") | |
export_btn = gr.Button("Export Conversation", variant="secondary") | |
# Export functionality | |
export_file = gr.File(label="Download Conversation", visible=False) | |
# Configuration display - assign to global variable | |
config_display_comp = gr.Markdown("Configuration will appear here after preview generation.") | |
# Connect preview chat functionality | |
preview_send.click( | |
preview_chat_response, | |
inputs=[preview_msg, preview_chatbot, preview_config_state, preview_url1, preview_url2, preview_url3, preview_url4], | |
outputs=[preview_msg, preview_chatbot] | |
) | |
preview_msg.submit( | |
preview_chat_response, | |
inputs=[preview_msg, preview_chatbot, preview_config_state, preview_url1, preview_url2, preview_url3, preview_url4], | |
outputs=[preview_msg, preview_chatbot] | |
) | |
preview_clear.click( | |
clear_preview_chat, | |
outputs=[preview_msg, preview_chatbot] | |
) | |
export_btn.click( | |
export_preview_conversation, | |
inputs=[preview_chatbot], | |
outputs=[export_file] | |
) | |
# Connect preview URL management buttons | |
preview_add_url_btn.click( | |
add_chat_urls, | |
inputs=[preview_url_count], | |
outputs=[preview_url3, preview_url4, preview_add_url_btn, preview_remove_url_btn, preview_url_count] | |
) | |
preview_remove_url_btn.click( | |
remove_chat_urls, | |
inputs=[preview_url_count], | |
outputs=[preview_url3, preview_url4, preview_add_url_btn, preview_remove_url_btn, preview_url_count] | |
) | |
with gr.Tab("Support"): | |
create_support_docs() | |
# Connect cross-tab functionality after all components are defined | |
preview_btn.click( | |
on_preview_combined, | |
inputs=[name, description, system_prompt, enable_research_assistant, model, temperature, max_tokens, examples_text, enable_dynamic_urls, enable_vector_rag, enable_web_search], | |
outputs=[preview_config_state, preview_status_comp, preview_chat_section_comp, config_display_comp] | |
) | |
if __name__ == "__main__": | |
# Configure launch parameters to avoid common development issues | |
launch_kwargs = { | |
"server_name": "127.0.0.1", # Use localhost instead of 0.0.0.0 | |
"server_port": 7860, | |
"share": False, # Disable sharing to avoid origin issues | |
"debug": False, # Disable debug mode to reduce console errors | |
"show_error": True, # Show errors in interface | |
"quiet": False, # Keep logging for debugging | |
"favicon_path": None, # Disable favicon to avoid 404s | |
"ssl_verify": False, # Disable SSL verification for local development | |
"allowed_paths": [], # Empty allowed paths | |
"blocked_paths": [], # Empty blocked paths | |
"root_path": None, # No root path | |
"app_kwargs": { | |
"docs_url": None, # Disable docs endpoint | |
"redoc_url": None, # Disable redoc endpoint | |
} | |
} | |
# Override settings for specific environments | |
if os.environ.get('CODESPACES'): | |
launch_kwargs.update({ | |
"server_name": "0.0.0.0", | |
"share": True | |
}) | |
elif 'devtunnels.ms' in os.environ.get('GRADIO_SERVER_NAME', ''): | |
launch_kwargs.update({ | |
"server_name": "0.0.0.0", | |
"share": True | |
}) | |
print("π Starting Chat UI Helper...") | |
print(f"π Server: {launch_kwargs['server_name']}:{launch_kwargs['server_port']}") | |
print(f"π Share: {launch_kwargs['share']}") | |
demo.launch(**launch_kwargs) |