chatui-helper / app.py
milwright's picture
Push helper assets
5bebe3e verified
raw
history blame
15.5 kB
import gradio as gr
import json
import zipfile
import io
import os
from datetime import datetime
# Template for generated space app (based on mvp_simple.py)
SPACE_TEMPLATE = '''import gradio as gr
import os
import requests
import json
# Configuration
SPACE_NAME = "{name}"
SPACE_DESCRIPTION = "{description}"
SYSTEM_PROMPT = """{system_prompt}"""
MODEL = "{model}"
# Get API key from environment - customizable variable name
API_KEY = os.environ.get("{api_key_var}")
def generate_response(message, history):
"""Generate response using OpenRouter API"""
if not API_KEY:
return "Please set your {api_key_var} in the Space settings."
# Build messages array for the API
messages = [{{"role": "system", "content": SYSTEM_PROMPT}}]
# Add conversation history - compatible with Gradio 5.x format
for chat in history:
if isinstance(chat, dict):
# New format: {{"role": "user", "content": "..."}} or {{"role": "assistant", "content": "..."}}
messages.append(chat)
else:
# Legacy format: ("user msg", "bot msg")
user_msg, bot_msg = chat
messages.append({{"role": "user", "content": user_msg}})
if bot_msg:
messages.append({{"role": "assistant", "content": bot_msg}})
# Add current message
messages.append({{"role": "user", "content": message}})
# Make API request
try:
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={{
"Authorization": f"Bearer {{API_KEY}}",
"Content-Type": "application/json"
}},
json={{
"model": MODEL,
"messages": messages,
"temperature": {temperature},
"max_tokens": {max_tokens}
}}
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"Error: {{response.status_code}} - {{response.text}}"
except Exception as e:
return f"Error: {{str(e)}}"
# Create simple Gradio interface using ChatInterface
demo = gr.ChatInterface(
fn=generate_response,
title=SPACE_NAME,
description=SPACE_DESCRIPTION,
examples={examples}
)
if __name__ == "__main__":
demo.launch()
'''
# Available models
MODELS = [
"google/gemma-2-9b-it",
"google/gemma-2-27b-it",
"meta-llama/llama-3.1-8b-instruct",
"meta-llama/llama-3.1-70b-instruct",
"anthropic/claude-3-haiku",
"anthropic/claude-3-sonnet",
"anthropic/claude-3.5-sonnet",
"openai/gpt-3.5-turbo",
"openai/gpt-4o-mini",
"openai/gpt-4o",
"mistralai/mistral-7b-instruct",
"mistralai/mixtral-8x7b-instruct"
]
def create_readme(config):
"""Generate README with deployment instructions"""
return f"""# {config['name']}
{config['description']}
## Quick Deploy to HuggingFace Spaces
### Step 1: Create the Space
1. Go to https://huggingface.co/spaces
2. Click "Create new Space"
3. Choose a name for your Space
4. Select **Gradio** as the SDK
5. Set visibility (Public/Private)
6. Click "Create Space"
### Step 2: Upload Files
1. In your new Space, click "Files" tab
2. Upload these files from the zip:
- `app.py`
- `requirements.txt`
3. Wait for "Building" to complete
### Step 3: Add API Key
1. Go to Settings (gear icon)
2. Click "Variables and secrets"
3. Click "New secret"
4. Name: `{config['api_key_var']}`
5. Value: Your OpenRouter API key
6. Click "Add"
### Step 4: Get Your API Key
1. Go to https://openrouter.ai/keys
2. Sign up/login if needed
3. Click "Create Key"
4. Copy the key (starts with `sk-or-`)
### Step 5: Test Your Space
- Go back to "App" tab
- Your Space should be running!
- Try the example prompts or ask a question
## Configuration
- **Model**: {config['model']}
- **Temperature**: {config['temperature']}
- **Max Tokens**: {config['max_tokens']}
- **API Key Variable**: {config['api_key_var']}
## Cost Information
OpenRouter charges per token used:
- Gemma 2 9B: ~$0.20 per million tokens
- Claude Haiku: ~$0.25 per million tokens
- GPT-4o-mini: ~$0.60 per million tokens
Typical conversation: ~300 tokens (cost: $0.00006 - $0.0018)
Check current pricing: https://openrouter.ai/models
## Customization
To modify your Space:
1. Edit `app.py` in your Space
2. Update configuration variables at the top
3. Changes deploy automatically
## Troubleshooting
- **"Please set your {config['api_key_var']}"**: Add the secret in Space settings
- **Error 401**: Invalid API key or no credits
- **Error 429**: Rate limit - wait and try again
- **Build failed**: Check requirements.txt formatting
## More Help
- HuggingFace Spaces: https://huggingface.co/docs/hub/spaces
- OpenRouter Docs: https://openrouter.ai/docs
- Gradio Docs: https://gradio.app/docs
---
Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} with Chat U/I Helper
"""
def create_requirements():
"""Generate requirements.txt"""
return "gradio==5.34.0\nrequests==2.31.0"
def generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text):
"""Generate deployable zip file"""
# Process examples
if examples_text and examples_text.strip():
examples_list = [ex.strip() for ex in examples_text.split('\n') if ex.strip()]
examples_json = json.dumps(examples_list)
else:
examples_json = json.dumps([
"Hello! How can you help me?",
"Tell me something interesting",
"What can you do?"
])
# Create config
config = {
'name': name,
'description': description,
'system_prompt': system_prompt,
'model': model,
'api_key_var': api_key_var,
'temperature': temperature,
'max_tokens': int(max_tokens),
'examples': examples_json
}
# Generate files
app_content = SPACE_TEMPLATE.format(**config)
readme_content = create_readme(config)
requirements_content = create_requirements()
# Create zip file with clean naming
filename = f"{name.lower().replace(' ', '_').replace('-', '_')}.zip"
# Create zip in memory and save to disk
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
zip_file.writestr('app.py', app_content)
zip_file.writestr('requirements.txt', requirements_content)
zip_file.writestr('README.md', readme_content)
zip_file.writestr('config.json', json.dumps(config, indent=2))
# Write zip to file
zip_buffer.seek(0)
with open(filename, 'wb') as f:
f.write(zip_buffer.getvalue())
return filename
# Define callback functions outside the interface
def on_generate(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text):
if not name or not name.strip():
return gr.update(value="Error: Please provide a Space Title", visible=True), gr.update(visible=False)
if not system_prompt or not system_prompt.strip():
return gr.update(value="Error: Please provide a System Prompt", visible=True), gr.update(visible=False)
try:
filename = generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text)
success_msg = f"""**Deployment package ready!**
**File**: `{filename}`
**What's included:**
- `app.py` - Ready-to-deploy chat interface
- `requirements.txt` - Dependencies
- `README.md` - Step-by-step deployment guide
- `config.json` - Configuration backup
**Next steps:**
1. Download the zip file below
2. Follow the README instructions to deploy on HuggingFace Spaces
3. Set your `{api_key_var}` secret in Space settings
**Your Space will be live in minutes!**"""
return gr.update(value=success_msg, visible=True), gr.update(value=filename, visible=True)
except Exception as e:
return gr.update(value=f"Error: {str(e)}", visible=True), gr.update(visible=False)
def respond(message, chat_history):
# Make actual API request to OpenRouter
import os
import requests
# Get API key from environment
api_key = os.environ.get("OPENROUTER_API_KEY")
if not api_key:
response = "Please set your OPENROUTER_API_KEY in the Space settings to use the chat support."
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
return "", chat_history
# Build conversation history for API
messages = [{
"role": "system",
"content": """You are a helpful assistant specializing in creating chat UIs for HuggingFace Spaces. You help users configure assistants for education and research. Provide concise, practical advice about:
- System prompts for different use cases (courses, research, tutoring)
- Model selection (recommending google/gemma-2-27b-it as a great balance)
- HuggingFace Space deployment tips
- Customization options
Keep responses brief and actionable. Focus on what the user is specifically asking about."""
}]
# Add conversation history
for chat in chat_history:
messages.append(chat)
# Add current message
messages.append({"role": "user", "content": message})
try:
# Make API request to OpenRouter
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
},
json={
"model": "google/gemma-2-27b-it",
"messages": messages,
"temperature": 0.7,
"max_tokens": 500
}
)
if response.status_code == 200:
assistant_response = response.json()['choices'][0]['message']['content']
else:
assistant_response = f"Error: {response.status_code} - {response.text}"
except Exception as e:
assistant_response = f"Error: {str(e)}"
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": assistant_response})
return "", chat_history
def clear_chat():
return "", []
# Create Gradio interface with proper tab structure
with gr.Blocks(title="Chat U/I Helper") as demo:
with gr.Tabs():
with gr.Tab("Spaces Configuration"):
gr.Markdown("# Spaces Configuration")
gr.Markdown("Convert custom assistants from HuggingChat into chat interfaces with HuggingFace Spaces. Configure and download everything needed to deploy a simple HF space using Gradio.")
with gr.Column():
name = gr.Textbox(
label="Space Title",
placeholder="My Course Helper",
value="My Custom Space"
)
description = gr.Textbox(
label="Space Description",
placeholder="A customizable AI chat interface for...",
lines=2,
value="A customizable AI chat interface for your specific needs"
)
model = gr.Dropdown(
label="Model",
choices=MODELS,
value=MODELS[0],
info="Choose based on your needs and budget"
)
api_key_var = gr.Textbox(
label="API Key Variable Name",
value="OPENROUTER_API_KEY",
info="Name for the secret in HuggingFace Space settings"
)
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="You are a research assistant...",
lines=4,
value="You are a clear and concise research assistant. Provide accurate, succinct, and responsive support."
)
examples_text = gr.Textbox(
label="Example Prompts (one per line)",
placeholder="Hello! How can you help me?\nWhat's the weather like?\nExplain quantum computing",
lines=3,
info="These will appear as clickable examples in the chat interface"
)
with gr.Row():
temperature = gr.Slider(
label="Temperature",
minimum=0,
maximum=2,
value=0.7,
step=0.1,
info="Higher = more creative, Lower = more focused"
)
max_tokens = gr.Slider(
label="Max Response Tokens",
minimum=50,
maximum=4096,
value=1024,
step=50
)
generate_btn = gr.Button("Generate Deployment Package", variant="primary")
status = gr.Markdown(visible=False)
download_file = gr.File(label="Download your zip package", visible=False)
# Connect the generate button
generate_btn.click(
on_generate,
inputs=[name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text],
outputs=[status, download_file]
)
with gr.Tab("Chat Support"):
gr.Markdown("# Chat Support")
gr.Markdown("Get personalized guidance on configuring chat UIs as HuggingFace Spaces for educational and research purposes.")
# Meta chat interface
with gr.Column():
chatbot = gr.Chatbot(
value=[],
label="Chat Support Assistant",
height=400,
type="messages"
)
msg = gr.Textbox(
label="Ask about configuring chat UIs for courses, research, or custom HuggingFace Spaces",
placeholder="How can I configure a chat UI for my senior seminar?",
lines=2
)
with gr.Row():
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
gr.Examples(
examples=[
"How do I make a math tutor bot?",
"What's a good system prompt?",
"Which model should I use?",
"Can I add file uploads?",
"Help me build a course assistant"
],
inputs=msg
)
# Connect the chat functionality
submit.click(respond, [msg, chatbot], [msg, chatbot])
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(clear_chat, outputs=[msg, chatbot])
if __name__ == "__main__":
demo.launch()